Chat Context Dependency Injection#
In this tutorial, we’ll build upon the concepts introduced in the Tools with Dependency Injection notebook to demonstrate how to use ChatContext
for more advanced workflows.
By leveraging ChatContext
, we can track the flow of conversations, ensuring proper function execution order. For example, before retrieving a user’s account balance, we’ll ensure the user has logged in first. This approach prevents unauthorized actions and enhances security.
Benefits of Using ChatContext
- Flow Control: It helps enforce the correct sequence of function calls. - Enhanced Security: Ensures actions depend on preconditions like authentication. - Simplified Debugging: Logs conversation history, making it easier to trace issues.
Installation#
To install AG2
, simply run the following command:
Note: If you have been using
autogen
orpyautogen
, all you need to do is upgrade it using:or
as
pyautogen
,autogen
, andag2
are aliases for the same PyPI package.
Imports#
import os
from typing import Annotated, Literal
from pydantic import BaseModel
from autogen.agentchat import AssistantAgent, UserProxyAgent
from autogen.tools.dependency_injection import BaseContext, ChatContext, Depends
Define BaseContext Class#
The following BaseContext
class and helper functions are adapted from the previous tutorial. They define the structure for securely handling account data and operations like login and balance retrieval.
class Account(BaseContext, BaseModel):
username: str
password: str
currency: Literal["USD", "EUR"] = "USD"
alice_account = Account(username="alice", password="password123")
bob_account = Account(username="bob", password="password456")
account_ballace_dict = {
(alice_account.username, alice_account.password): 300,
(bob_account.username, bob_account.password): 200,
}
Helper Functions#
These functions validate account credentials and retrieve account balances.
def _verify_account(account: Account):
if (account.username, account.password) not in account_ballace_dict:
raise ValueError("Invalid username or password")
def _get_balance(account: Account):
_verify_account(account)
return f"Your balance is {account_ballace_dict[(account.username, account.password)]}{account.currency}"
Agent Configuration#
Configure the agents for the interaction.
config_list
defines the LLM configurations, including the model and API key.UserProxyAgent
simulates user inputs without requiring actual human interaction (set toNEVER
).AssistantAgent
represents the AI agent, configured with the LLM settings.
config_list = [{"model": "gpt-4o-mini", "api_key": os.environ["OPENAI_API_KEY"]}]
agent = AssistantAgent(
name="agent",
llm_config={"config_list": config_list},
)
user_proxy = UserProxyAgent(
name="user_proxy_1",
human_input_mode="NEVER",
llm_config=False,
)
Injecting a ChatContext Parameter#
Now let’s upgrade the example from the previous tutorial by introducing the ChatContext
parameter. This enhancement allows us to enforce proper execution order in the workflow, ensuring that users log in before accessing sensitive data like account balances.
The following functions will be registered:
login
: Verifies the user’s credentials and ensures they are logged in.get_balance
: Retrieves the account balance but only if the user has successfully logged in first.
@user_proxy.register_for_execution()
@agent.register_for_llm(description="Login")
def login(
account: Annotated[Account, Depends(bob_account)],
) -> str:
_verify_account(account)
return "You are logged in"
@user_proxy.register_for_execution()
@agent.register_for_llm(description="Get balance")
def get_balance(
account: Annotated[Account, Depends(bob_account)],
chat_context: ChatContext,
) -> str:
_verify_account(account)
# Extract the list of messages exchanged with the first agent in the conversation.
# The chat_context.chat_messages is a dictionary where keys are agents (objects)
# and values are lists of message objects. We take the first value (messages of the first agent).
messages_with_first_agent = list(chat_context.chat_messages.values())[0]
login_function_called = False
for message in messages_with_first_agent:
if "tool_calls" in message and message["tool_calls"][0]["function"]["name"] == "login":
login_function_called = True
break
if not login_function_called:
raise ValueError("Please login first")
balance = _get_balance(account)
return balance
Finally, we initiate a chat to retrieve the balance.