Bases: LLMAgent
(In preview) A class for generic conversable agents which can be configured as assistant or user proxy.
After receiving each message, the agent will send a reply to the sender unless the msg is a termination msg. For example, AssistantAgent and UserProxyAgent are subclasses of this class, configured with different default settings.
To modify auto reply, override generate_reply
method.
To disable/enable human response in every turn, set human_input_mode
to "NEVER" or "ALWAYS".
To modify the way to get human input, override get_human_input
method.
To modify the way to execute code blocks, single code block, or function call, override execute_code_blocks
,
run_code
, and execute_function
methods respectively.
Args:
1) name (str): name of the agent.
2) system_message (str or list): system message for the ChatCompletion inference.
3) is_termination_msg (function): a function that takes a message in the form of a dictionary and returns a boolean value indicating if this received message is a termination message. The dict can contain the following keys: "content", "role", "name", "function_call".
4) max_consecutive_auto_reply (int): the maximum number of consecutive auto replies. default to None (no limit provided, class attribute MAX_CONSECUTIVE_AUTO_REPLY will be used as the limit in this case). When set to 0, no auto reply will be generated.
5) human_input_mode (str): whether to ask for human inputs every time a message is received.
Possible values are "ALWAYS", "TERMINATE", "NEVER".
(1) When "ALWAYS", the agent prompts for human input every time a message is received.
Under this mode, the conversation stops when the human input is "exit",
or when is_termination_msg is True and there is no human input.
(2) When "TERMINATE", the agent only prompts for human input only when a termination message is received or
the number of auto reply reaches the max_consecutive_auto_reply.
(3) When "NEVER", the agent will never prompt for human input. Under this mode, the conversation stops
when the number of auto reply reaches the max_consecutive_auto_reply or when is_termination_msg is True.
6) function_map (dict[str, callable]): Mapping function names (passed to openai) to callable functions, also used for tool calls.
7) code_execution_config (dict or False): config for the code execution.
To disable code execution, set to False. Otherwise, set to a dictionary with the following keys:
- work_dir (Optional, str): The working directory for the code execution.
If None, a default working directory will be used.
The default working directory is the "extensions" directory under
"path_to_autogen".
- use_docker (Optional, list, str or bool): The docker image to use for code execution.
Default is True, which means the code will be executed in a docker container. A default list of images will be used.
If a list or a str of image name(s) is provided, the code will be executed in a docker container
with the first image successfully pulled.
If False, the code will be executed in the current environment.
We strongly recommend using docker for code execution.
- timeout (Optional, int): The maximum execution time in seconds.
- last_n_messages (Experimental, int or str): The number of messages to look back for code execution.
If set to 'auto', it will scan backwards through all messages arriving since the agent last spoke, which is typically the last time execution was attempted. (Default: auto)
8) llm_config (LLMConfig or dict or False or None): llm inference configuration.
Please refer to [OpenAIWrapper.create](https://docs.ag2.ai/latest/docs/api-reference/autogen/OpenAIWrapper/#autogen.OpenAIWrapper.create)
for available options.
When using OpenAI or Azure OpenAI endpoints, please specify a non-empty 'model' either in `llm_config` or in each config of 'config_list' in `llm_config`.
To disable llm-based auto reply, set to False.
When set to None, will use self.DEFAULT_CONFIG, which defaults to False.
9) default_auto_reply (str or dict): default auto reply when no code execution or llm-based reply is generated.
10) description (str): a short description of the agent. This description is used by other agents (e.g. the GroupChatManager) to decide when to call upon this agent. (Default: system_message)
11) chat_messages (dict or None): the previous chat messages that this agent had in the past with other agents. Can be used to give the agent a memory by providing the chat history. This will allow the agent to resume previous had conversations. Defaults to an empty chat history.
12) silent (bool or None): (Experimental) whether to print the message sent. If None, will use the value of silent in each function.
13) context_variables (ContextVariables or None): Context variables that provide a persistent context for the agent. Note: This will be a reference to a shared context for multi-agent chats.
Behaves like a dictionary with keys and values (akin to dict[str, Any]).
14) functions (List[Callable[..., Any]]): A list of functions to register with the agent, these will be wrapped up as tools and registered for LLM (not execution).
15) update_agent_state_before_reply (List[Callable[..., Any]]): A list of functions, including UpdateSystemMessage's, called to update the agent before it replies.
16) handoffs (Handoffs): Handoffs object containing all handoff transition conditions.
Source code in autogen/agentchat/conversable_agent.py
| def __init__(
self,
name: str,
system_message: str | list | None = "You are a helpful AI Assistant.",
is_termination_msg: Callable[[dict[str, Any]], bool] | None = None,
max_consecutive_auto_reply: int | None = None,
human_input_mode: Literal["ALWAYS", "NEVER", "TERMINATE"] = "TERMINATE",
function_map: dict[str, Callable[..., Any]] | None = None,
code_execution_config: dict[str, Any] | Literal[False] = False,
llm_config: LLMConfig | dict[str, Any] | Literal[False] | None = None,
default_auto_reply: str | dict[str, Any] = "",
description: str | None = None,
chat_messages: dict[Agent, list[dict[str, Any]]] | None = None,
silent: bool | None = None,
context_variables: Optional["ContextVariables"] = None,
functions: list[Callable[..., Any]] | Callable[..., Any] = None,
update_agent_state_before_reply: list[Callable | UpdateSystemMessage]
| Callable
| UpdateSystemMessage
| None = None,
handoffs: Handoffs | None = None,
):
"""Args:\n
1) name (str): name of the agent.\n
2) system_message (str or list): system message for the ChatCompletion inference.\n
3) is_termination_msg (function): a function that takes a message in the form of a dictionary
and returns a boolean value indicating if this received message is a termination message.
The dict can contain the following keys: "content", "role", "name", "function_call".\n
4) max_consecutive_auto_reply (int): the maximum number of consecutive auto replies.
default to None (no limit provided, class attribute MAX_CONSECUTIVE_AUTO_REPLY will be used as the limit in this case).
When set to 0, no auto reply will be generated.\n
5) human_input_mode (str): whether to ask for human inputs every time a message is received.\n
Possible values are "ALWAYS", "TERMINATE", "NEVER".\n
(1) When "ALWAYS", the agent prompts for human input every time a message is received.
Under this mode, the conversation stops when the human input is "exit",
or when is_termination_msg is True and there is no human input.\n
(2) When "TERMINATE", the agent only prompts for human input only when a termination message is received or
the number of auto reply reaches the max_consecutive_auto_reply.\n
(3) When "NEVER", the agent will never prompt for human input. Under this mode, the conversation stops
when the number of auto reply reaches the max_consecutive_auto_reply or when is_termination_msg is True. \n
6) function_map (dict[str, callable]): Mapping function names (passed to openai) to callable functions, also used for tool calls. \n
7) code_execution_config (dict or False): config for the code execution.\n
To disable code execution, set to False. Otherwise, set to a dictionary with the following keys:\n
- work_dir (Optional, str): The working directory for the code execution.\n
If None, a default working directory will be used.\n
The default working directory is the "extensions" directory under
"path_to_autogen".\n
- use_docker (Optional, list, str or bool): The docker image to use for code execution.\n
Default is True, which means the code will be executed in a docker container. A default list of images will be used.\n
If a list or a str of image name(s) is provided, the code will be executed in a docker container\n
with the first image successfully pulled.\n
If False, the code will be executed in the current environment.\n
We strongly recommend using docker for code execution.\n
- timeout (Optional, int): The maximum execution time in seconds.\n
- last_n_messages (Experimental, int or str): The number of messages to look back for code execution.
If set to 'auto', it will scan backwards through all messages arriving since the agent last spoke, which is typically the last time execution was attempted. (Default: auto)\n
8) llm_config (LLMConfig or dict or False or None): llm inference configuration.\n
Please refer to [OpenAIWrapper.create](https://docs.ag2.ai/latest/docs/api-reference/autogen/OpenAIWrapper/#autogen.OpenAIWrapper.create)\n
for available options.\n
When using OpenAI or Azure OpenAI endpoints, please specify a non-empty 'model' either in `llm_config` or in each config of 'config_list' in `llm_config`.\n
To disable llm-based auto reply, set to False.\n
When set to None, will use self.DEFAULT_CONFIG, which defaults to False.\n
9) default_auto_reply (str or dict): default auto reply when no code execution or llm-based reply is generated.\n
10) description (str): a short description of the agent. This description is used by other agents
(e.g. the GroupChatManager) to decide when to call upon this agent. (Default: system_message)\n
11) chat_messages (dict or None): the previous chat messages that this agent had in the past with other agents.
Can be used to give the agent a memory by providing the chat history. This will allow the agent to
resume previous had conversations. Defaults to an empty chat history.\n
12) silent (bool or None): (Experimental) whether to print the message sent. If None, will use the value of
silent in each function.\n
13) context_variables (ContextVariables or None): Context variables that provide a persistent context for the agent.
Note: This will be a reference to a shared context for multi-agent chats.\n
Behaves like a dictionary with keys and values (akin to dict[str, Any]).\n
14) functions (List[Callable[..., Any]]): A list of functions to register with the agent, these will be wrapped up as tools and registered for LLM (not execution).\n
15) update_agent_state_before_reply (List[Callable[..., Any]]): A list of functions, including UpdateSystemMessage's, called to update the agent before it replies.\n
16) handoffs (Handoffs): Handoffs object containing all handoff transition conditions.\n
"""
self.handoffs = handoffs if handoffs is not None else Handoffs()
self.input_guardrails: list[Guardrail] = []
self.output_guardrails: list[Guardrail] = []
# we change code_execution_config below and we have to make sure we don't change the input
# in case of UserProxyAgent, without this we could even change the default value {}
code_execution_config = (
code_execution_config.copy() if hasattr(code_execution_config, "copy") else code_execution_config
)
# a dictionary of conversations, default value is list
if chat_messages is None:
self._oai_messages = defaultdict(list)
else:
self._oai_messages = chat_messages
self._oai_system_message = [{"content": system_message, "role": "system"}]
self._description = description if description is not None else system_message
self._is_termination_msg = (
is_termination_msg
if is_termination_msg is not None
else (lambda x: content_str(x.get("content")) == "TERMINATE")
)
self.silent = silent
self.run_executor: ConversableAgent | None = None
# Take a copy to avoid modifying the given dict
if isinstance(llm_config, dict):
try:
llm_config = copy.deepcopy(llm_config)
except TypeError as e:
raise TypeError(
"Please implement __deepcopy__ method for each value class in llm_config to support deepcopy."
" Refer to the docs for more details: https://docs.ag2.ai/docs/user-guide/advanced-concepts/llm-configuration-deep-dive/#adding-http-client-in-llm_config-for-proxy"
) from e
self.llm_config = self._validate_llm_config(llm_config)
self.client = self._create_client(self.llm_config)
self._validate_name(name)
self._name = name
if logging_enabled():
log_new_agent(self, locals())
# Initialize standalone client cache object.
self.client_cache = None
# To track UI tools
self._ui_tools: list[Tool] = []
self.human_input_mode = human_input_mode
self._max_consecutive_auto_reply = (
max_consecutive_auto_reply if max_consecutive_auto_reply is not None else self.MAX_CONSECUTIVE_AUTO_REPLY
)
self._consecutive_auto_reply_counter = defaultdict(int)
self._max_consecutive_auto_reply_dict = defaultdict(self.max_consecutive_auto_reply)
self._function_map = (
{}
if function_map is None
else {name: callable for name, callable in function_map.items() if self._assert_valid_name(name)}
)
self._default_auto_reply = default_auto_reply
self._reply_func_list = []
self._human_input = []
self.reply_at_receive = defaultdict(bool)
self.register_reply([Agent, None], ConversableAgent.generate_oai_reply)
self.register_reply([Agent, None], ConversableAgent.a_generate_oai_reply, ignore_async_in_sync_chat=True)
self.context_variables = context_variables if context_variables is not None else ContextVariables()
self._tools: list[Tool] = []
# Register functions to the agent
if isinstance(functions, list):
if not all(isinstance(func, Callable) for func in functions):
raise TypeError("All elements in the functions list must be callable")
self._add_functions(functions)
elif isinstance(functions, Callable):
self._add_single_function(functions)
elif functions is not None:
raise TypeError("Functions must be a callable or a list of callables")
# Setting up code execution.
# Do not register code execution reply if code execution is disabled.
if code_execution_config is not False:
# If code_execution_config is None, set it to an empty dict.
if code_execution_config is None:
warnings.warn(
"Using None to signal a default code_execution_config is deprecated. "
"Use {} to use default or False to disable code execution.",
stacklevel=2,
)
code_execution_config = {}
if not isinstance(code_execution_config, dict):
raise ValueError("code_execution_config must be a dict or False.")
# We have got a valid code_execution_config.
self._code_execution_config: dict[str, Any] | Literal[False] = code_execution_config
if self._code_execution_config.get("executor") is not None:
if "use_docker" in self._code_execution_config:
raise ValueError(
"'use_docker' in code_execution_config is not valid when 'executor' is set. Use the appropriate arg in the chosen executor instead."
)
if "work_dir" in self._code_execution_config:
raise ValueError(
"'work_dir' in code_execution_config is not valid when 'executor' is set. Use the appropriate arg in the chosen executor instead."
)
if "timeout" in self._code_execution_config:
raise ValueError(
"'timeout' in code_execution_config is not valid when 'executor' is set. Use the appropriate arg in the chosen executor instead."
)
# Use the new code executor.
self._code_executor = CodeExecutorFactory.create(self._code_execution_config)
self.register_reply([Agent, None], ConversableAgent._generate_code_execution_reply_using_executor)
else:
# Legacy code execution using code_utils.
use_docker = self._code_execution_config.get("use_docker", None)
use_docker = decide_use_docker(use_docker)
check_can_use_docker_or_throw(use_docker)
self._code_execution_config["use_docker"] = use_docker
self.register_reply([Agent, None], ConversableAgent.generate_code_execution_reply)
else:
# Code execution is disabled.
self._code_execution_config = False
self.register_reply([Agent, None], ConversableAgent.generate_tool_calls_reply)
self.register_reply([Agent, None], ConversableAgent.a_generate_tool_calls_reply, ignore_async_in_sync_chat=True)
self.register_reply([Agent, None], ConversableAgent.generate_function_call_reply)
self.register_reply(
[Agent, None], ConversableAgent.a_generate_function_call_reply, ignore_async_in_sync_chat=True
)
self.register_reply([Agent, None], ConversableAgent.check_termination_and_human_reply)
self.register_reply(
[Agent, None], ConversableAgent.a_check_termination_and_human_reply, ignore_async_in_sync_chat=True
)
# Registered hooks are kept in lists, indexed by hookable method, to be called in their order of registration.
# New hookable methods should be added to this list as required to support new agent capabilities.
self.hook_lists: dict[str, list[Callable[..., Any]]] = {
"process_last_received_message": [],
"process_all_messages_before_reply": [],
"process_message_before_send": [],
"update_agent_state": [],
}
# Associate agent update state hooks
self._register_update_agent_state_before_reply(update_agent_state_before_reply)
|
DEFAULT_CONFIG class-attribute
instance-attribute
MAX_CONSECUTIVE_AUTO_REPLY class-attribute
instance-attribute
MAX_CONSECUTIVE_AUTO_REPLY = 100
DEFAULT_SUMMARY_PROMPT class-attribute
instance-attribute
DEFAULT_SUMMARY_PROMPT = 'Summarize the takeaway from the conversation. Do not add any introductory phrases.'
DEFAULT_SUMMARY_METHOD class-attribute
instance-attribute
DEFAULT_SUMMARY_METHOD = 'last_msg'
llm_config instance-attribute
llm_config = _validate_llm_config(llm_config)
handoffs instance-attribute
handoffs = handoffs if handoffs is not None else Handoffs()
output_guardrails instance-attribute
silent instance-attribute
run_executor instance-attribute
client instance-attribute
client = _create_client(llm_config)
client_cache instance-attribute
human_input_mode = human_input_mode
reply_at_receive instance-attribute
context_variables instance-attribute
context_variables = context_variables if context_variables is not None else ContextVariables()
hook_lists instance-attribute
hook_lists = {'process_last_received_message': [], 'process_all_messages_before_reply': [], 'process_message_before_send': [], 'update_agent_state': []}
name property
Get the name of the agent.
description property
writable
Get the description of the agent.
code_executor property
The code executor used by this agent. Returns None if code execution is disabled.
system_message property
Return the system message.
chat_messages property
A dictionary of conversations from agent to list of messages.
use_docker property
Bool value of whether to use docker to execute the code, or str value of the docker image name to use, or None when code execution is disabled.
Get the agent's tools (registered for LLM)
Note this is a copy of the tools list, use add_tool and remove_tool to modify the tools list.
register_reply
register_reply(trigger, reply_func, position=0, config=None, reset_config=None, *, ignore_async_in_sync_chat=False, remove_other_reply_funcs=False)
Register a reply function.
The reply function will be called when the trigger matches the sender. The function registered later will be checked earlier by default. To change the order, set the position to a positive integer.
Both sync and async reply functions can be registered. The sync reply function will be triggered from both sync and async chats. However, an async reply function will only be triggered from async chats (initiated with ConversableAgent.a_initiate_chat
). If an async
reply function is registered and a chat is initialized with a sync function, ignore_async_in_sync_chat
determines the behaviour as follows: if ignore_async_in_sync_chat
is set to False
(default value), an exception will be raised, and if ignore_async_in_sync_chat
is set to True
, the reply function will be ignored.
PARAMETER | DESCRIPTION |
trigger | the trigger. If a class is provided, the reply function will be called when the sender is an instance of the class. If a string is provided, the reply function will be called when the sender's name matches the string. If an agent instance is provided, the reply function will be called when the sender is the agent instance. If a callable is provided, the reply function will be called when the callable returns True. If a list is provided, the reply function will be called when any of the triggers in the list is activated. If None is provided, the reply function will be called only when the sender is None. Note: Be sure to register None as a trigger if you would like to trigger an auto-reply function with non-empty messages and sender=None . TYPE: Agent class, str, Agent instance, callable, or list |
reply_func | the reply function. The function takes a recipient agent, a list of messages, a sender agent and a config as input and returns a reply message. def reply_func(
recipient: ConversableAgent,
messages: Optional[List[Dict]] = None,
sender: Optional[Agent] = None,
config: Optional[Any] = None,
) -> Tuple[bool, Union[str, Dict, None]]:
TYPE: Callable |
position | the position of the reply function in the reply function list. The function registered later will be checked earlier by default. To change the order, set the position to a positive integer. TYPE: int DEFAULT: 0 |
config | the config to be passed to the reply function. When an agent is reset, the config will be reset to the original value. TYPE: Any DEFAULT: None |
reset_config | the function to reset the config. The function returns None. Signature: def reset_config(config: Any) TYPE: Callable DEFAULT: None |
ignore_async_in_sync_chat | whether to ignore the async reply function in sync chats. If False , an exception will be raised if an async reply function is registered and a chat is initialized with a sync function. TYPE: bool DEFAULT: False |
remove_other_reply_funcs | whether to remove other reply functions when registering this reply function. TYPE: bool DEFAULT: False |
Source code in autogen/agentchat/conversable_agent.py
| def register_reply(
self,
trigger: type[Agent] | str | Agent | Callable[[Agent], bool] | list,
reply_func: Callable,
position: int = 0,
config: Any | None = None,
reset_config: Callable[..., Any] | None = None,
*,
ignore_async_in_sync_chat: bool = False,
remove_other_reply_funcs: bool = False,
):
"""Register a reply function.
The reply function will be called when the trigger matches the sender.
The function registered later will be checked earlier by default.
To change the order, set the position to a positive integer.
Both sync and async reply functions can be registered. The sync reply function will be triggered
from both sync and async chats. However, an async reply function will only be triggered from async
chats (initiated with `ConversableAgent.a_initiate_chat`). If an `async` reply function is registered
and a chat is initialized with a sync function, `ignore_async_in_sync_chat` determines the behaviour as follows:
if `ignore_async_in_sync_chat` is set to `False` (default value), an exception will be raised, and
if `ignore_async_in_sync_chat` is set to `True`, the reply function will be ignored.
Args:
trigger (Agent class, str, Agent instance, callable, or list): the trigger.
If a class is provided, the reply function will be called when the sender is an instance of the class.
If a string is provided, the reply function will be called when the sender's name matches the string.
If an agent instance is provided, the reply function will be called when the sender is the agent instance.
If a callable is provided, the reply function will be called when the callable returns True.
If a list is provided, the reply function will be called when any of the triggers in the list is activated.
If None is provided, the reply function will be called only when the sender is None.
Note: Be sure to register `None` as a trigger if you would like to trigger an auto-reply function with non-empty messages and `sender=None`.
reply_func (Callable): the reply function.
The function takes a recipient agent, a list of messages, a sender agent and a config as input and returns a reply message.
```python
def reply_func(
recipient: ConversableAgent,
messages: Optional[List[Dict]] = None,
sender: Optional[Agent] = None,
config: Optional[Any] = None,
) -> Tuple[bool, Union[str, Dict, None]]:
```
position (int): the position of the reply function in the reply function list.
The function registered later will be checked earlier by default.
To change the order, set the position to a positive integer.
config (Any): the config to be passed to the reply function.
When an agent is reset, the config will be reset to the original value.
reset_config (Callable): the function to reset the config.
The function returns None. Signature: ```def reset_config(config: Any)```
ignore_async_in_sync_chat (bool): whether to ignore the async reply function in sync chats. If `False`, an exception
will be raised if an async reply function is registered and a chat is initialized with a sync
function.
remove_other_reply_funcs (bool): whether to remove other reply functions when registering this reply function.
"""
if not isinstance(trigger, (type, str, Agent, Callable, list)):
raise ValueError("trigger must be a class, a string, an agent, a callable or a list.")
if remove_other_reply_funcs:
self._reply_func_list.clear()
self._reply_func_list.insert(
position,
{
"trigger": trigger,
"reply_func": reply_func,
"config": copy.copy(config),
"init_config": config,
"reset_config": reset_config,
"ignore_async_in_sync_chat": ignore_async_in_sync_chat and inspect.iscoroutinefunction(reply_func),
},
)
|
replace_reply_func
replace_reply_func(old_reply_func, new_reply_func)
Replace a registered reply function with a new one.
PARAMETER | DESCRIPTION |
old_reply_func | the old reply function to be replaced. TYPE: Callable |
new_reply_func | the new reply function to replace the old one. TYPE: Callable |
Source code in autogen/agentchat/conversable_agent.py
| def replace_reply_func(self, old_reply_func: Callable, new_reply_func: Callable):
"""Replace a registered reply function with a new one.
Args:
old_reply_func (Callable): the old reply function to be replaced.
new_reply_func (Callable): the new reply function to replace the old one.
"""
for f in self._reply_func_list:
if f["reply_func"] == old_reply_func:
f["reply_func"] = new_reply_func
|
register_nested_chats
register_nested_chats(chat_queue, trigger, reply_func_from_nested_chats='summary_from_nested_chats', position=2, use_async=None, **kwargs)
Register a nested chat reply function.
PARAMETER | DESCRIPTION |
chat_queue | a list of chat objects to be initiated. If use_async is used, then all messages in chat_queue must have a chat-id associated with them. TYPE: list |
trigger | refer to register_reply for details. TYPE: Agent class, str, Agent instance, callable, or list |
reply_func_from_nested_chats | the reply function for the nested chat. The function takes a chat_queue for nested chat, recipient agent, a list of messages, a sender agent and a config as input and returns a reply message. Default to "summary_from_nested_chats", which corresponds to a built-in reply function that get summary from the nested chat_queue. def reply_func_from_nested_chats(
chat_queue: List[Dict],
recipient: ConversableAgent,
messages: Optional[List[Dict]] = None,
sender: Optional[Agent] = None,
config: Optional[Any] = None,
) -> Tuple[bool, Union[str, Dict, None]]:
TYPE: (Callable, str) DEFAULT: 'summary_from_nested_chats' |
position | Ref to register_reply for details. Default to 2. It means we first check the termination and human reply, then check the registered nested chat reply. TYPE: int DEFAULT: 2 |
use_async | Uses a_initiate_chats internally to start nested chats. If the original chat is initiated with a_initiate_chats, you may set this to true so nested chats do not run in sync. TYPE: bool | None DEFAULT: None |
kwargs | Ref to register_reply for details. TYPE: Any DEFAULT: {} |
Source code in autogen/agentchat/conversable_agent.py
| def register_nested_chats(
self,
chat_queue: list[dict[str, Any]],
trigger: type[Agent] | str | Agent | Callable[[Agent], bool] | list,
reply_func_from_nested_chats: str | Callable[..., Any] = "summary_from_nested_chats",
position: int = 2,
use_async: bool | None = None,
**kwargs: Any,
) -> None:
"""Register a nested chat reply function.
Args:
chat_queue (list): a list of chat objects to be initiated. If use_async is used, then all messages in chat_queue must have a chat-id associated with them.
trigger (Agent class, str, Agent instance, callable, or list): refer to `register_reply` for details.
reply_func_from_nested_chats (Callable, str): the reply function for the nested chat.
The function takes a chat_queue for nested chat, recipient agent, a list of messages, a sender agent and a config as input and returns a reply message.
Default to "summary_from_nested_chats", which corresponds to a built-in reply function that get summary from the nested chat_queue.
```python
def reply_func_from_nested_chats(
chat_queue: List[Dict],
recipient: ConversableAgent,
messages: Optional[List[Dict]] = None,
sender: Optional[Agent] = None,
config: Optional[Any] = None,
) -> Tuple[bool, Union[str, Dict, None]]:
```
position (int): Ref to `register_reply` for details. Default to 2. It means we first check the termination and human reply, then check the registered nested chat reply.
use_async: Uses a_initiate_chats internally to start nested chats. If the original chat is initiated with a_initiate_chats, you may set this to true so nested chats do not run in sync.
kwargs: Ref to `register_reply` for details.
"""
if use_async:
for chat in chat_queue:
if chat.get("chat_id") is None:
raise ValueError("chat_id is required for async nested chats")
if use_async:
if reply_func_from_nested_chats == "summary_from_nested_chats":
reply_func_from_nested_chats = self._a_summary_from_nested_chats
if not callable(reply_func_from_nested_chats) or not inspect.iscoroutinefunction(
reply_func_from_nested_chats
):
raise ValueError("reply_func_from_nested_chats must be a callable and a coroutine")
async def wrapped_reply_func(recipient, messages=None, sender=None, config=None):
return await reply_func_from_nested_chats(chat_queue, recipient, messages, sender, config)
else:
if reply_func_from_nested_chats == "summary_from_nested_chats":
reply_func_from_nested_chats = self._summary_from_nested_chats
if not callable(reply_func_from_nested_chats):
raise ValueError("reply_func_from_nested_chats must be a callable")
def wrapped_reply_func(recipient, messages=None, sender=None, config=None):
return reply_func_from_nested_chats(chat_queue, recipient, messages, sender, config)
functools.update_wrapper(wrapped_reply_func, reply_func_from_nested_chats)
self.register_reply(
trigger,
wrapped_reply_func,
position,
kwargs.get("config"),
kwargs.get("reset_config"),
ignore_async_in_sync_chat=(
not use_async if use_async is not None else kwargs.get("ignore_async_in_sync_chat")
),
)
|
update_system_message
update_system_message(system_message)
Update the system message.
PARAMETER | DESCRIPTION |
system_message | system message for the ChatCompletion inference. TYPE: str |
Source code in autogen/agentchat/conversable_agent.py
| def update_system_message(self, system_message: str) -> None:
"""Update the system message.
Args:
system_message (str): system message for the ChatCompletion inference.
"""
self._oai_system_message[0]["content"] = system_message
|
update_max_consecutive_auto_reply
update_max_consecutive_auto_reply(value, sender=None)
Update the maximum number of consecutive auto replies.
PARAMETER | DESCRIPTION |
value | the maximum number of consecutive auto replies. TYPE: int |
sender | when the sender is provided, only update the max_consecutive_auto_reply for that sender. TYPE: Agent DEFAULT: None |
Source code in autogen/agentchat/conversable_agent.py
| def update_max_consecutive_auto_reply(self, value: int, sender: Agent | None = None):
"""Update the maximum number of consecutive auto replies.
Args:
value (int): the maximum number of consecutive auto replies.
sender (Agent): when the sender is provided, only update the max_consecutive_auto_reply for that sender.
"""
if sender is None:
self._max_consecutive_auto_reply = value
for k in self._max_consecutive_auto_reply_dict:
self._max_consecutive_auto_reply_dict[k] = value
else:
self._max_consecutive_auto_reply_dict[sender] = value
|
max_consecutive_auto_reply
max_consecutive_auto_reply(sender=None)
The maximum number of consecutive auto replies.
Source code in autogen/agentchat/conversable_agent.py
| def max_consecutive_auto_reply(self, sender: Agent | None = None) -> int:
"""The maximum number of consecutive auto replies."""
return self._max_consecutive_auto_reply if sender is None else self._max_consecutive_auto_reply_dict[sender]
|
chat_messages_for_summary
chat_messages_for_summary(agent)
A list of messages as a conversation to summarize.
Source code in autogen/agentchat/conversable_agent.py
| def chat_messages_for_summary(self, agent: Agent) -> list[dict[str, Any]]:
"""A list of messages as a conversation to summarize."""
return self._oai_messages[agent]
|
last_message
The last message exchanged with the agent.
PARAMETER | DESCRIPTION |
agent | The agent in the conversation. If None and more than one agent's conversations are found, an error will be raised. If None and only one conversation is found, the last message of the only conversation will be returned. TYPE: Agent DEFAULT: None |
RETURNS | DESCRIPTION |
dict[str, Any] | None | The last message exchanged with the agent. |
Source code in autogen/agentchat/conversable_agent.py
| def last_message(self, agent: Agent | None = None) -> dict[str, Any] | None:
"""The last message exchanged with the agent.
Args:
agent (Agent): The agent in the conversation.
If None and more than one agent's conversations are found, an error will be raised.
If None and only one conversation is found, the last message of the only conversation will be returned.
Returns:
The last message exchanged with the agent.
"""
if agent is None:
n_conversations = len(self._oai_messages)
if n_conversations == 0:
return None
if n_conversations == 1:
for conversation in self._oai_messages.values():
return conversation[-1]
raise ValueError("More than one conversation is found. Please specify the sender to get the last message.")
if agent not in self._oai_messages:
raise KeyError(
f"The agent '{agent.name}' is not present in any conversation. No history available for this agent."
)
return self._oai_messages[agent][-1]
|
send
send(message, recipient, request_reply=None, silent=False)
Send a message to another agent.
PARAMETER | DESCRIPTION |
message | message to be sent. The message could contain the following fields: - content (str or List): Required, the content of the message. (Can be None) - function_call (str): the name of the function to be called. - name (str): the name of the function to be called. - role (str): the role of the message, any role that is not "function" will be modified to "assistant". - context (dict): the context of the message, which will be passed to OpenAIWrapper.create. For example, one agent can send a message A as: TYPE: dict or str |
{
"content": lambda context: context["use_tool_msg"],
"context": {"use_tool_msg": "Use tool X if they are relevant."},
}
Next time, one agent can send a message B with a different "use_tool_msg". Then the content of message A will be refreshed to the new "use_tool_msg". So effectively, this provides a way for an agent to send a "link" and modify the content of the "link" later. recipient (Agent): the recipient of the message. request_reply (bool or None): whether to request a reply from the recipient. silent (bool or None): (Experimental) whether to print the message sent.
RAISES | DESCRIPTION |
ValueError | if the message can't be converted into a valid ChatCompletion message. |
Source code in autogen/agentchat/conversable_agent.py
| def send(
self,
message: dict[str, Any] | str,
recipient: Agent,
request_reply: bool | None = None,
silent: bool | None = False,
):
"""Send a message to another agent.
Args:
message (dict or str): message to be sent.
The message could contain the following fields:
- content (str or List): Required, the content of the message. (Can be None)
- function_call (str): the name of the function to be called.
- name (str): the name of the function to be called.
- role (str): the role of the message, any role that is not "function"
will be modified to "assistant".
- context (dict): the context of the message, which will be passed to
[OpenAIWrapper.create](https://docs.ag2.ai/latest/docs/api-reference/autogen/OpenAIWrapper/#autogen.OpenAIWrapper.create).
For example, one agent can send a message A as:
```python
{
"content": lambda context: context["use_tool_msg"],
"context": {"use_tool_msg": "Use tool X if they are relevant."},
}
```
Next time, one agent can send a message B with a different "use_tool_msg".
Then the content of message A will be refreshed to the new "use_tool_msg".
So effectively, this provides a way for an agent to send a "link" and modify
the content of the "link" later.
recipient (Agent): the recipient of the message.
request_reply (bool or None): whether to request a reply from the recipient.
silent (bool or None): (Experimental) whether to print the message sent.
Raises:
ValueError: if the message can't be converted into a valid ChatCompletion message.
"""
message = self._process_message_before_send(message, recipient, ConversableAgent._is_silent(self, silent))
# When the agent composes and sends the message, the role of the message is "assistant"
# unless it's "function".
valid = self._append_oai_message(message, "assistant", recipient, is_sending=True)
if valid:
recipient.receive(message, self, request_reply, silent)
else:
raise ValueError(
"Message can't be converted into a valid ChatCompletion message. Either content or function_call must be provided."
)
|
a_send async
a_send(message, recipient, request_reply=None, silent=False)
(async) Send a message to another agent.
PARAMETER | DESCRIPTION |
message | message to be sent. The message could contain the following fields: - content (str or List): Required, the content of the message. (Can be None) - function_call (str): the name of the function to be called. - name (str): the name of the function to be called. - role (str): the role of the message, any role that is not "function" will be modified to "assistant". - context (dict): the context of the message, which will be passed to OpenAIWrapper.create. For example, one agent can send a message A as: TYPE: dict or str |
{
"content": lambda context: context["use_tool_msg"],
"context": {"use_tool_msg": "Use tool X if they are relevant."},
}
Next time, one agent can send a message B with a different "use_tool_msg". Then the content of message A will be refreshed to the new "use_tool_msg". So effectively, this provides a way for an agent to send a "link" and modify the content of the "link" later. recipient (Agent): the recipient of the message. request_reply (bool or None): whether to request a reply from the recipient. silent (bool or None): (Experimental) whether to print the message sent.
RAISES | DESCRIPTION |
ValueError | if the message can't be converted into a valid ChatCompletion message. |
Source code in autogen/agentchat/conversable_agent.py
| async def a_send(
self,
message: dict[str, Any] | str,
recipient: Agent,
request_reply: bool | None = None,
silent: bool | None = False,
):
"""(async) Send a message to another agent.
Args:
message (dict or str): message to be sent.
The message could contain the following fields:
- content (str or List): Required, the content of the message. (Can be None)
- function_call (str): the name of the function to be called.
- name (str): the name of the function to be called.
- role (str): the role of the message, any role that is not "function"
will be modified to "assistant".
- context (dict): the context of the message, which will be passed to
[OpenAIWrapper.create](https://docs.ag2.ai/latest/docs/api-reference/autogen/OpenAIWrapper/#autogen.OpenAIWrapper.create).
For example, one agent can send a message A as:
```python
{
"content": lambda context: context["use_tool_msg"],
"context": {"use_tool_msg": "Use tool X if they are relevant."},
}
```
Next time, one agent can send a message B with a different "use_tool_msg".
Then the content of message A will be refreshed to the new "use_tool_msg".
So effectively, this provides a way for an agent to send a "link" and modify
the content of the "link" later.
recipient (Agent): the recipient of the message.
request_reply (bool or None): whether to request a reply from the recipient.
silent (bool or None): (Experimental) whether to print the message sent.
Raises:
ValueError: if the message can't be converted into a valid ChatCompletion message.
"""
message = self._process_message_before_send(message, recipient, ConversableAgent._is_silent(self, silent))
# When the agent composes and sends the message, the role of the message is "assistant"
# unless it's "function".
valid = self._append_oai_message(message, "assistant", recipient, is_sending=True)
if valid:
await recipient.a_receive(message, self, request_reply, silent)
else:
raise ValueError(
"Message can't be converted into a valid ChatCompletion message. Either content or function_call must be provided."
)
|
receive
receive(message, sender, request_reply=None, silent=False)
Receive a message from another agent.
Once a message is received, this function sends a reply to the sender or stop. The reply can be generated automatically or entered manually by a human.
PARAMETER | DESCRIPTION |
message | message from the sender. If the type is dict, it may contain the following reserved fields (either content or function_call need to be provided). 1. "content": content of the message, can be None. 2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls") 3. "tool_calls": a list of dictionaries containing the function name and arguments. 4. "role": role of the message, can be "assistant", "user", "function", "tool". This field is only needed to distinguish between "function" or "assistant"/"user". 5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name. 6. "context" (dict): the context of the message, which will be passed to OpenAIWrapper.create. TYPE: dict or str |
sender | sender of an Agent instance. TYPE: Agent |
request_reply | whether a reply is requested from the sender. If None, the value is determined by self.reply_at_receive[sender] . TYPE: bool or None DEFAULT: None |
silent | (Experimental) whether to print the message received. TYPE: bool or None DEFAULT: False |
RAISES | DESCRIPTION |
ValueError | if the message can't be converted into a valid ChatCompletion message. |
Source code in autogen/agentchat/conversable_agent.py
| def receive(
self,
message: dict[str, Any] | str,
sender: Agent,
request_reply: bool | None = None,
silent: bool | None = False,
):
"""Receive a message from another agent.
Once a message is received, this function sends a reply to the sender or stop.
The reply can be generated automatically or entered manually by a human.
Args:
message (dict or str): message from the sender. If the type is dict, it may contain the following reserved fields (either content or function_call need to be provided).
1. "content": content of the message, can be None.
2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls")
3. "tool_calls": a list of dictionaries containing the function name and arguments.
4. "role": role of the message, can be "assistant", "user", "function", "tool".
This field is only needed to distinguish between "function" or "assistant"/"user".
5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name.
6. "context" (dict): the context of the message, which will be passed to
[OpenAIWrapper.create](https://docs.ag2.ai/latest/docs/api-reference/autogen/OpenAIWrapper/#autogen.OpenAIWrapper.create).
sender: sender of an Agent instance.
request_reply (bool or None): whether a reply is requested from the sender.
If None, the value is determined by `self.reply_at_receive[sender]`.
silent (bool or None): (Experimental) whether to print the message received.
Raises:
ValueError: if the message can't be converted into a valid ChatCompletion message.
"""
self._process_received_message(message, sender, silent)
if request_reply is False or (request_reply is None and self.reply_at_receive[sender] is False):
return
reply = self.generate_reply(messages=self.chat_messages[sender], sender=sender)
if reply is not None:
self.send(reply, sender, silent=silent)
|
a_receive async
a_receive(message, sender, request_reply=None, silent=False)
(async) Receive a message from another agent.
Once a message is received, this function sends a reply to the sender or stop. The reply can be generated automatically or entered manually by a human.
PARAMETER | DESCRIPTION |
message | message from the sender. If the type is dict, it may contain the following reserved fields (either content or function_call need to be provided). 1. "content": content of the message, can be None. 2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls") 3. "tool_calls": a list of dictionaries containing the function name and arguments. 4. "role": role of the message, can be "assistant", "user", "function". This field is only needed to distinguish between "function" or "assistant"/"user". 5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name. 6. "context" (dict): the context of the message, which will be passed to OpenAIWrapper.create. TYPE: dict or str |
sender | sender of an Agent instance. TYPE: Agent |
request_reply | whether a reply is requested from the sender. If None, the value is determined by self.reply_at_receive[sender] . TYPE: bool or None DEFAULT: None |
silent | (Experimental) whether to print the message received. TYPE: bool or None DEFAULT: False |
RAISES | DESCRIPTION |
ValueError | if the message can't be converted into a valid ChatCompletion message. |
Source code in autogen/agentchat/conversable_agent.py
| async def a_receive(
self,
message: dict[str, Any] | str,
sender: Agent,
request_reply: bool | None = None,
silent: bool | None = False,
):
"""(async) Receive a message from another agent.
Once a message is received, this function sends a reply to the sender or stop.
The reply can be generated automatically or entered manually by a human.
Args:
message (dict or str): message from the sender. If the type is dict, it may contain the following reserved fields (either content or function_call need to be provided).
1. "content": content of the message, can be None.
2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls")
3. "tool_calls": a list of dictionaries containing the function name and arguments.
4. "role": role of the message, can be "assistant", "user", "function".
This field is only needed to distinguish between "function" or "assistant"/"user".
5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name.
6. "context" (dict): the context of the message, which will be passed to
[OpenAIWrapper.create](https://docs.ag2.ai/latest/docs/api-reference/autogen/OpenAIWrapper/#autogen.OpenAIWrapper.create).
sender: sender of an Agent instance.
request_reply (bool or None): whether a reply is requested from the sender.
If None, the value is determined by `self.reply_at_receive[sender]`.
silent (bool or None): (Experimental) whether to print the message received.
Raises:
ValueError: if the message can't be converted into a valid ChatCompletion message.
"""
self._process_received_message(message, sender, silent)
if request_reply is False or (request_reply is None and self.reply_at_receive[sender] is False):
return
reply = await self.a_generate_reply(messages=self.chat_messages[sender], sender=sender)
if reply is not None:
await self.a_send(reply, sender, silent=silent)
|
initiate_chat
initiate_chat(recipient, clear_history=True, silent=False, cache=None, max_turns=None, summary_method=DEFAULT_SUMMARY_METHOD, summary_args={}, message=None, **kwargs)
Initiate a chat with the recipient agent.
Reset the consecutive auto reply counter. If clear_history
is True, the chat history with the recipient agent will be cleared.
PARAMETER | DESCRIPTION |
recipient | TYPE: ConversableAgent |
clear_history | whether to clear the chat history with the agent. Default is True. TYPE: bool DEFAULT: True |
silent | (Experimental) whether to print the messages for this conversation. Default is False. TYPE: bool or None DEFAULT: False |
cache | the cache client to be used for this conversation. Default is None. TYPE: AbstractCache or None DEFAULT: None |
max_turns | the maximum number of turns for the chat between the two agents. One turn means one conversation round trip. Note that this is different from max_consecutive_auto_reply which is the maximum number of consecutive auto replies; and it is also different from max_rounds in GroupChat which is the maximum number of rounds in a group chat session. If max_turns is set to None, the chat will continue until a termination condition is met. Default is None. TYPE: int or None DEFAULT: None |
summary_method | a method to get a summary from the chat. Default is DEFAULT_SUMMARY_METHOD, i.e., "last_msg". Supported strings are "last_msg" and "reflection_with_llm": - when set to "last_msg", it returns the last message of the dialog as the summary. - when set to "reflection_with_llm", it returns a summary extracted using an llm client. llm_config must be set in either the recipient or sender. A callable summary_method should take the recipient and sender agent in a chat as input and return a string of summary. E.g., def my_summary_method(
sender: ConversableAgent,
recipient: ConversableAgent,
summary_args: dict,
):
return recipient.last_message(sender)["content"]
TYPE: str or callable DEFAULT: DEFAULT_SUMMARY_METHOD |
summary_args | a dictionary of arguments to be passed to the summary_method. One example key is "summary_prompt", and value is a string of text used to prompt a LLM-based agent (the sender or recipient agent) to reflect on the conversation and extract a summary when summary_method is "reflection_with_llm". The default summary_prompt is DEFAULT_SUMMARY_PROMPT, i.e., "Summarize takeaway from the conversation. Do not add any introductory phrases. If the intended request is NOT properly addressed, please point it out." Another available key is "summary_role", which is the role of the message sent to the agent in charge of summarizing. Default is "system". TYPE: dict DEFAULT: {} |
message | the initial message to be sent to the recipient. Needs to be provided. Otherwise, input() will be called to get the initial message. - If a string or a dict is provided, it will be used as the initial message. generate_init_message is called to generate the initial message for the agent based on this string and the context. If dict, it may contain the following reserved fields (either content or tool_calls need to be provided). 1. "content": content of the message, can be None.
2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls")
3. "tool_calls": a list of dictionaries containing the function name and arguments.
4. "role": role of the message, can be "assistant", "user", "function".
This field is only needed to distinguish between "function" or "assistant"/"user".
5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name.
6. "context" (dict): the context of the message, which will be passed to
`OpenAIWrapper.create`.
-
If a callable is provided, it will be called to get the initial message in the form of a string or a dict. If the returned type is dict, it may contain the reserved fields mentioned above. Example of a callable message (returning a string): def my_message(
sender: ConversableAgent, recipient: ConversableAgent, context: dict
) -> Union[str, Dict]:
carryover = context.get("carryover", "")
if isinstance(message, list):
carryover = carryover[-1]
final_msg = "Write a blogpost." + "\nContext: \n" + carryover
return final_msg
Example of a callable message (returning a dict): def my_message(
sender: ConversableAgent, recipient: ConversableAgent, context: dict
) -> Union[str, Dict]:
final_msg = {}
carryover = context.get("carryover", "")
if isinstance(message, list):
carryover = carryover[-1]
final_msg["content"] = "Write a blogpost." + "\nContext: \n" + carryover
final_msg["context"] = {"prefix": "Today I feel"}
return final_msg
TYPE: (str, dict or Callable) DEFAULT: None |
**kwargs | any additional information. It has the following reserved fields: - "carryover": a string or a list of string to specify the carryover information to be passed to this chat. If provided, we will combine this carryover (by attaching a "context: " string and the carryover content after the message content) with the "message" content when generating the initial chat message in generate_init_message . - "verbose": a boolean to specify whether to print the message and carryover in a chat. Default is False. TYPE: Any DEFAULT: {} |
RAISES | DESCRIPTION |
RuntimeError | if any async reply functions are registered and not ignored in sync chat. |
Source code in autogen/agentchat/conversable_agent.py
| def initiate_chat(
self,
recipient: "ConversableAgent",
clear_history: bool = True,
silent: bool | None = False,
cache: AbstractCache | None = None,
max_turns: int | None = None,
summary_method: str | Callable[..., Any] | None = DEFAULT_SUMMARY_METHOD,
summary_args: dict[str, Any] | None = {},
message: dict[str, Any] | str | Callable[..., Any] | None = None,
**kwargs: Any,
) -> ChatResult:
"""Initiate a chat with the recipient agent.
Reset the consecutive auto reply counter.
If `clear_history` is True, the chat history with the recipient agent will be cleared.
Args:
recipient: the recipient agent.
clear_history (bool): whether to clear the chat history with the agent. Default is True.
silent (bool or None): (Experimental) whether to print the messages for this conversation. Default is False.
cache (AbstractCache or None): the cache client to be used for this conversation. Default is None.
max_turns (int or None): the maximum number of turns for the chat between the two agents. One turn means one conversation round trip. Note that this is different from
`max_consecutive_auto_reply` which is the maximum number of consecutive auto replies; and it is also different from `max_rounds` in GroupChat which is the maximum number of rounds in a group chat session.
If max_turns is set to None, the chat will continue until a termination condition is met. Default is None.
summary_method (str or callable): a method to get a summary from the chat. Default is DEFAULT_SUMMARY_METHOD, i.e., "last_msg".
Supported strings are "last_msg" and "reflection_with_llm":
- when set to "last_msg", it returns the last message of the dialog as the summary.
- when set to "reflection_with_llm", it returns a summary extracted using an llm client.
`llm_config` must be set in either the recipient or sender.
A callable summary_method should take the recipient and sender agent in a chat as input and return a string of summary. E.g.,
```python
def my_summary_method(
sender: ConversableAgent,
recipient: ConversableAgent,
summary_args: dict,
):
return recipient.last_message(sender)["content"]
```
summary_args (dict): a dictionary of arguments to be passed to the summary_method.
One example key is "summary_prompt", and value is a string of text used to prompt a LLM-based agent (the sender or recipient agent) to reflect
on the conversation and extract a summary when summary_method is "reflection_with_llm".
The default summary_prompt is DEFAULT_SUMMARY_PROMPT, i.e., "Summarize takeaway from the conversation. Do not add any introductory phrases. If the intended request is NOT properly addressed, please point it out."
Another available key is "summary_role", which is the role of the message sent to the agent in charge of summarizing. Default is "system".
message (str, dict or Callable): the initial message to be sent to the recipient. Needs to be provided. Otherwise, input() will be called to get the initial message.
- If a string or a dict is provided, it will be used as the initial message. `generate_init_message` is called to generate the initial message for the agent based on this string and the context.
If dict, it may contain the following reserved fields (either content or tool_calls need to be provided).
1. "content": content of the message, can be None.
2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls")
3. "tool_calls": a list of dictionaries containing the function name and arguments.
4. "role": role of the message, can be "assistant", "user", "function".
This field is only needed to distinguish between "function" or "assistant"/"user".
5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name.
6. "context" (dict): the context of the message, which will be passed to
`OpenAIWrapper.create`.
- If a callable is provided, it will be called to get the initial message in the form of a string or a dict.
If the returned type is dict, it may contain the reserved fields mentioned above.
Example of a callable message (returning a string):
```python
def my_message(
sender: ConversableAgent, recipient: ConversableAgent, context: dict
) -> Union[str, Dict]:
carryover = context.get("carryover", "")
if isinstance(message, list):
carryover = carryover[-1]
final_msg = "Write a blogpost." + "\\nContext: \\n" + carryover
return final_msg
```
Example of a callable message (returning a dict):
```python
def my_message(
sender: ConversableAgent, recipient: ConversableAgent, context: dict
) -> Union[str, Dict]:
final_msg = {}
carryover = context.get("carryover", "")
if isinstance(message, list):
carryover = carryover[-1]
final_msg["content"] = "Write a blogpost." + "\\nContext: \\n" + carryover
final_msg["context"] = {"prefix": "Today I feel"}
return final_msg
```
**kwargs: any additional information. It has the following reserved fields:
- "carryover": a string or a list of string to specify the carryover information to be passed to this chat.
If provided, we will combine this carryover (by attaching a "context: " string and the carryover content after the message content) with the "message" content when generating the initial chat
message in `generate_init_message`.
- "verbose": a boolean to specify whether to print the message and carryover in a chat. Default is False.
Raises:
RuntimeError: if any async reply functions are registered and not ignored in sync chat.
Returns:
ChatResult: an ChatResult object.
"""
iostream = IOStream.get_default()
cache = Cache.get_current_cache(cache)
_chat_info = locals().copy()
_chat_info["sender"] = self
consolidate_chat_info(_chat_info, uniform_sender=self)
for agent in [self, recipient]:
agent._raise_exception_on_async_reply_functions()
agent.previous_cache = agent.client_cache
agent.client_cache = cache
if isinstance(max_turns, int):
self._prepare_chat(recipient, clear_history, reply_at_receive=False)
is_termination = False
for i in range(max_turns):
# check recipient max consecutive auto reply limit
if self._consecutive_auto_reply_counter[recipient] >= recipient._max_consecutive_auto_reply:
break
if i == 0:
if isinstance(message, Callable):
msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs)
else:
msg2send = self.generate_init_message(message, **kwargs)
else:
last_message = self.chat_messages[recipient][-1]
if self._should_terminate_chat(recipient, last_message):
break
msg2send = self.generate_reply(messages=self.chat_messages[recipient], sender=recipient)
if msg2send is None:
break
self.send(msg2send, recipient, request_reply=True, silent=silent)
else: # No breaks in the for loop, so we have reached max turns
iostream.send(
TerminationEvent(
termination_reason=f"Maximum turns ({max_turns}) reached", sender=self, recipient=recipient
)
)
else:
self._prepare_chat(recipient, clear_history)
if isinstance(message, Callable):
msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs)
else:
msg2send = self.generate_init_message(message, **kwargs)
self.send(msg2send, recipient, silent=silent)
summary = self._summarize_chat(
summary_method,
summary_args,
recipient,
cache=cache,
)
for agent in [self, recipient]:
agent.client_cache = agent.previous_cache
agent.previous_cache = None
chat_result = ChatResult(
chat_history=self.chat_messages[recipient],
summary=summary,
cost=gather_usage_summary([self, recipient]),
human_input=self._human_input,
)
return chat_result
|
run
run(recipient=None, clear_history=True, silent=False, cache=None, max_turns=None, summary_method=DEFAULT_SUMMARY_METHOD, summary_args={}, message=None, executor_kwargs=None, tools=None, user_input=False, msg_to='agent', **kwargs)
Source code in autogen/agentchat/conversable_agent.py
| def run(
self,
recipient: Optional["ConversableAgent"] = None,
clear_history: bool = True,
silent: bool | None = False,
cache: AbstractCache | None = None,
max_turns: int | None = None,
summary_method: str | Callable[..., Any] | None = DEFAULT_SUMMARY_METHOD,
summary_args: dict[str, Any] | None = {},
message: dict[str, Any] | str | Callable[..., Any] | None = None,
executor_kwargs: dict[str, Any] | None = None,
tools: Tool | Iterable[Tool] | None = None,
user_input: bool | None = False,
msg_to: str | None = "agent",
**kwargs: Any,
) -> RunResponseProtocol:
iostream = ThreadIOStream()
agents = [self, recipient] if recipient else [self]
response = RunResponse(iostream, agents=agents)
if recipient is None:
def initiate_chat(
self=self,
iostream: ThreadIOStream = iostream,
response: RunResponse = response,
) -> None:
with (
IOStream.set_default(iostream),
self._create_or_get_executor(
executor_kwargs=executor_kwargs,
tools=tools,
agent_name="user",
agent_human_input_mode="ALWAYS" if user_input else "NEVER",
) as executor,
):
try:
if msg_to == "agent":
chat_result = executor.initiate_chat(
self,
message=message,
clear_history=clear_history,
max_turns=max_turns,
summary_method=summary_method,
)
else:
chat_result = self.initiate_chat(
executor,
message=message,
clear_history=clear_history,
max_turns=max_turns,
summary_method=summary_method,
)
IOStream.get_default().send(
RunCompletionEvent(
history=chat_result.chat_history,
summary=chat_result.summary,
cost=chat_result.cost,
last_speaker=self.name,
)
)
except Exception as e:
response.iostream.send(ErrorEvent(error=e))
else:
def initiate_chat(
self=self,
iostream: ThreadIOStream = iostream,
response: RunResponse = response,
) -> None:
with IOStream.set_default(iostream): # type: ignore[arg-type]
try:
chat_result = self.initiate_chat(
recipient,
clear_history=clear_history,
silent=silent,
cache=cache,
max_turns=max_turns,
summary_method=summary_method,
summary_args=summary_args,
message=message,
**kwargs,
)
response._summary = chat_result.summary
response._messages = chat_result.chat_history
_last_speaker = recipient if chat_result.chat_history[-1]["name"] == recipient.name else self
if hasattr(recipient, "last_speaker"):
_last_speaker = recipient.last_speaker
IOStream.get_default().send(
RunCompletionEvent(
history=chat_result.chat_history,
summary=chat_result.summary,
cost=chat_result.cost,
last_speaker=_last_speaker.name,
)
)
except Exception as e:
response.iostream.send(ErrorEvent(error=e))
threading.Thread(
target=initiate_chat,
).start()
return response
|
a_initiate_chat async
a_initiate_chat(recipient, clear_history=True, silent=False, cache=None, max_turns=None, summary_method=DEFAULT_SUMMARY_METHOD, summary_args={}, message=None, **kwargs)
(async) Initiate a chat with the recipient agent.
Reset the consecutive auto reply counter. If clear_history
is True, the chat history with the recipient agent will be cleared. a_generate_init_message
is called to generate the initial message for the agent.
Args: Please refer to initiate_chat
.
Source code in autogen/agentchat/conversable_agent.py
| async def a_initiate_chat(
self,
recipient: "ConversableAgent",
clear_history: bool = True,
silent: bool | None = False,
cache: AbstractCache | None = None,
max_turns: int | None = None,
summary_method: str | Callable[..., Any] | None = DEFAULT_SUMMARY_METHOD,
summary_args: dict[str, Any] | None = {},
message: str | Callable[..., Any] | None = None,
**kwargs: Any,
) -> ChatResult:
"""(async) Initiate a chat with the recipient agent.
Reset the consecutive auto reply counter.
If `clear_history` is True, the chat history with the recipient agent will be cleared.
`a_generate_init_message` is called to generate the initial message for the agent.
Args: Please refer to `initiate_chat`.
Returns:
ChatResult: an ChatResult object.
"""
iostream = IOStream.get_default()
_chat_info = locals().copy()
_chat_info["sender"] = self
consolidate_chat_info(_chat_info, uniform_sender=self)
for agent in [self, recipient]:
agent.previous_cache = agent.client_cache
agent.client_cache = cache
if isinstance(max_turns, int):
self._prepare_chat(recipient, clear_history, reply_at_receive=False)
is_termination = False
for _ in range(max_turns):
if _ == 0:
if isinstance(message, Callable):
msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs)
else:
msg2send = await self.a_generate_init_message(message, **kwargs)
else:
last_message = self.chat_messages[recipient][-1]
if self._should_terminate_chat(recipient, last_message):
break
msg2send = await self.a_generate_reply(messages=self.chat_messages[recipient], sender=recipient)
if msg2send is None:
break
await self.a_send(msg2send, recipient, request_reply=True, silent=silent)
else: # No breaks in the for loop, so we have reached max turns
iostream.send(
TerminationEvent(
termination_reason=f"Maximum turns ({max_turns}) reached", sender=self, recipient=recipient
)
)
else:
self._prepare_chat(recipient, clear_history)
if isinstance(message, Callable):
msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs)
else:
msg2send = await self.a_generate_init_message(message, **kwargs)
await self.a_send(msg2send, recipient, silent=silent)
summary = self._summarize_chat(
summary_method,
summary_args,
recipient,
cache=cache,
)
for agent in [self, recipient]:
agent.client_cache = agent.previous_cache
agent.previous_cache = None
chat_result = ChatResult(
chat_history=self.chat_messages[recipient],
summary=summary,
cost=gather_usage_summary([self, recipient]),
human_input=self._human_input,
)
return chat_result
|
a_run async
a_run(recipient=None, clear_history=True, silent=False, cache=None, max_turns=None, summary_method=DEFAULT_SUMMARY_METHOD, summary_args={}, message=None, executor_kwargs=None, tools=None, user_input=False, msg_to='agent', **kwargs)
Source code in autogen/agentchat/conversable_agent.py
| async def a_run(
self,
recipient: Optional["ConversableAgent"] = None,
clear_history: bool = True,
silent: bool | None = False,
cache: AbstractCache | None = None,
max_turns: int | None = None,
summary_method: str | Callable[..., Any] | None = DEFAULT_SUMMARY_METHOD,
summary_args: dict[str, Any] | None = {},
message: dict[str, Any] | str | Callable[..., Any] | None = None,
executor_kwargs: dict[str, Any] | None = None,
tools: Tool | Iterable[Tool] | None = None,
user_input: bool | None = False,
msg_to: str | None = "agent",
**kwargs: Any,
) -> AsyncRunResponseProtocol:
iostream = AsyncThreadIOStream()
agents = [self, recipient] if recipient else [self]
response = AsyncRunResponse(iostream, agents=agents)
if recipient is None:
async def initiate_chat(
self=self,
iostream: AsyncThreadIOStream = iostream,
response: AsyncRunResponse = response,
) -> None:
with (
IOStream.set_default(iostream),
self._create_or_get_executor(
executor_kwargs=executor_kwargs,
tools=tools,
agent_name="user",
agent_human_input_mode="ALWAYS" if user_input else "NEVER",
) as executor,
):
try:
if msg_to == "agent":
chat_result = await executor.a_initiate_chat(
self,
message=message,
clear_history=clear_history,
max_turns=max_turns,
summary_method=summary_method,
)
else:
chat_result = await self.a_initiate_chat(
executor,
message=message,
clear_history=clear_history,
max_turns=max_turns,
summary_method=summary_method,
)
IOStream.get_default().send(
RunCompletionEvent(
history=chat_result.chat_history,
summary=chat_result.summary,
cost=chat_result.cost,
last_speaker=self.name,
)
)
except Exception as e:
response.iostream.send(ErrorEvent(error=e))
else:
async def initiate_chat(
self=self,
iostream: AsyncThreadIOStream = iostream,
response: AsyncRunResponse = response,
) -> None:
with IOStream.set_default(iostream): # type: ignore[arg-type]
try:
chat_result = await self.a_initiate_chat(
recipient,
clear_history=clear_history,
silent=silent,
cache=cache,
max_turns=max_turns,
summary_method=summary_method,
summary_args=summary_args,
message=message,
**kwargs,
)
last_speaker = recipient if chat_result.chat_history[-1]["name"] == recipient.name else self
if hasattr(recipient, "last_speaker"):
last_speaker = recipient.last_speaker
IOStream.get_default().send(
RunCompletionEvent(
history=chat_result.chat_history,
summary=chat_result.summary,
cost=chat_result.cost,
last_speaker=last_speaker.name,
)
)
except Exception as e:
response.iostream.send(ErrorEvent(error=e))
asyncio.create_task(initiate_chat())
return response
|
initiate_chats
initiate_chats(chat_queue)
(Experimental) Initiate chats with multiple agents.
PARAMETER | DESCRIPTION |
chat_queue | a list of dictionaries containing the information of the chats. Each dictionary should contain the input arguments for initiate_chat TYPE: List[Dict] |
Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue.
Source code in autogen/agentchat/conversable_agent.py
| def initiate_chats(self, chat_queue: list[dict[str, Any]]) -> list[ChatResult]:
"""(Experimental) Initiate chats with multiple agents.
Args:
chat_queue (List[Dict]): a list of dictionaries containing the information of the chats.
Each dictionary should contain the input arguments for [`initiate_chat`](#initiate-chat)
Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue.
"""
_chat_queue = self._check_chat_queue_for_sender(chat_queue)
self._finished_chats = initiate_chats(_chat_queue)
return self._finished_chats
|
sequential_run
sequential_run(chat_queue)
(Experimental) Initiate chats with multiple agents sequentially.
PARAMETER | DESCRIPTION |
chat_queue | a list of dictionaries containing the information of the chats. Each dictionary should contain the input arguments for initiate_chat TYPE: List[Dict] |
Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue.
Source code in autogen/agentchat/conversable_agent.py
| def sequential_run(
self,
chat_queue: list[dict[str, Any]],
) -> list[RunResponseProtocol]:
"""(Experimental) Initiate chats with multiple agents sequentially.
Args:
chat_queue (List[Dict]): a list of dictionaries containing the information of the chats.
Each dictionary should contain the input arguments for [`initiate_chat`](#initiate-chat)
Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue.
"""
iostreams = [ThreadIOStream() for _ in range(len(chat_queue))]
# todo: add agents
responses = [RunResponse(iostream, agents=[]) for iostream in iostreams]
def _initiate_chats(
iostreams: list[ThreadIOStream] = iostreams,
responses: list[RunResponseProtocol] = responses,
) -> None:
response = responses[0]
try:
_chat_queue = self._check_chat_queue_for_sender(chat_queue)
consolidate_chat_info(_chat_queue)
_validate_recipients(_chat_queue)
finished_chats = []
for chat_info, response, iostream in zip(_chat_queue, responses, iostreams):
with IOStream.set_default(iostream):
_chat_carryover = chat_info.get("carryover", [])
finished_chat_indexes_to_exclude_from_carryover = chat_info.get(
"finished_chat_indexes_to_exclude_from_carryover", []
)
if isinstance(_chat_carryover, str):
_chat_carryover = [_chat_carryover]
chat_info["carryover"] = _chat_carryover + [
r.summary
for i, r in enumerate(finished_chats)
if i not in finished_chat_indexes_to_exclude_from_carryover
]
if not chat_info.get("silent", False):
IOStream.get_default().send(PostCarryoverProcessingEvent(chat_info=chat_info))
sender = chat_info["sender"]
chat_res = sender.initiate_chat(**chat_info)
IOStream.get_default().send(
RunCompletionEvent(
history=chat_res.chat_history,
summary=chat_res.summary,
cost=chat_res.cost,
last_speaker=(self if chat_res.chat_history[-1]["name"] == self.name else sender).name,
)
)
finished_chats.append(chat_res)
except Exception as e:
response.iostream.send(ErrorEvent(error=e))
threading.Thread(target=_initiate_chats).start()
return responses
|
a_initiate_chats async
a_initiate_chats(chat_queue)
Source code in autogen/agentchat/conversable_agent.py
| async def a_initiate_chats(self, chat_queue: list[dict[str, Any]]) -> dict[int, ChatResult]:
_chat_queue = self._check_chat_queue_for_sender(chat_queue)
self._finished_chats = await a_initiate_chats(_chat_queue)
return self._finished_chats
|
a_sequential_run async
a_sequential_run(chat_queue)
(Experimental) Initiate chats with multiple agents sequentially.
PARAMETER | DESCRIPTION |
chat_queue | a list of dictionaries containing the information of the chats. Each dictionary should contain the input arguments for initiate_chat TYPE: List[Dict] |
Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue.
Source code in autogen/agentchat/conversable_agent.py
| async def a_sequential_run(
self,
chat_queue: list[dict[str, Any]],
) -> list[AsyncRunResponseProtocol]:
"""(Experimental) Initiate chats with multiple agents sequentially.
Args:
chat_queue (List[Dict]): a list of dictionaries containing the information of the chats.
Each dictionary should contain the input arguments for [`initiate_chat`](#initiate-chat)
Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue.
"""
iostreams = [AsyncThreadIOStream() for _ in range(len(chat_queue))]
# todo: add agents
responses = [AsyncRunResponse(iostream, agents=[]) for iostream in iostreams]
async def _a_initiate_chats(
iostreams: list[AsyncThreadIOStream] = iostreams,
responses: list[AsyncRunResponseProtocol] = responses,
) -> None:
response = responses[0]
try:
_chat_queue = self._check_chat_queue_for_sender(chat_queue)
consolidate_chat_info(_chat_queue)
_validate_recipients(_chat_queue)
finished_chats = []
for chat_info, response, iostream in zip(_chat_queue, responses, iostreams):
with IOStream.set_default(iostream):
_chat_carryover = chat_info.get("carryover", [])
finished_chat_indexes_to_exclude_from_carryover = chat_info.get(
"finished_chat_indexes_to_exclude_from_carryover", []
)
if isinstance(_chat_carryover, str):
_chat_carryover = [_chat_carryover]
chat_info["carryover"] = _chat_carryover + [
r.summary
for i, r in enumerate(finished_chats)
if i not in finished_chat_indexes_to_exclude_from_carryover
]
if not chat_info.get("silent", False):
IOStream.get_default().send(PostCarryoverProcessingEvent(chat_info=chat_info))
sender = chat_info["sender"]
chat_res = await sender.a_initiate_chat(**chat_info)
IOStream.get_default().send(
RunCompletionEvent(
history=chat_res.chat_history,
summary=chat_res.summary,
cost=chat_res.cost,
last_speaker=(self if chat_res.chat_history[-1]["name"] == self.name else sender).name,
)
)
finished_chats.append(chat_res)
except Exception as e:
response.iostream.send(ErrorEvent(error=e))
asyncio.create_task(_a_initiate_chats())
return responses
|
get_chat_results
get_chat_results(chat_index=None)
A summary from the finished chats of particular agents.
Source code in autogen/agentchat/conversable_agent.py
| def get_chat_results(self, chat_index: int | None = None) -> list[ChatResult] | ChatResult:
"""A summary from the finished chats of particular agents."""
if chat_index is not None:
return self._finished_chats[chat_index]
else:
return self._finished_chats
|
reset
Reset the agent.
Source code in autogen/agentchat/conversable_agent.py
| def reset(self) -> None:
"""Reset the agent."""
self.clear_history()
self.reset_consecutive_auto_reply_counter()
self.stop_reply_at_receive()
if self.client is not None:
self.client.clear_usage_summary()
for reply_func_tuple in self._reply_func_list:
if reply_func_tuple["reset_config"] is not None:
reply_func_tuple["reset_config"](reply_func_tuple["config"])
else:
reply_func_tuple["config"] = copy.copy(reply_func_tuple["init_config"])
|
stop_reply_at_receive
stop_reply_at_receive(sender=None)
Reset the reply_at_receive of the sender.
Source code in autogen/agentchat/conversable_agent.py
| def stop_reply_at_receive(self, sender: Agent | None = None):
"""Reset the reply_at_receive of the sender."""
if sender is None:
self.reply_at_receive.clear()
else:
self.reply_at_receive[sender] = False
|
reset_consecutive_auto_reply_counter
reset_consecutive_auto_reply_counter(sender=None)
Reset the consecutive_auto_reply_counter of the sender.
Source code in autogen/agentchat/conversable_agent.py
| def reset_consecutive_auto_reply_counter(self, sender: Agent | None = None):
"""Reset the consecutive_auto_reply_counter of the sender."""
if sender is None:
self._consecutive_auto_reply_counter.clear()
else:
self._consecutive_auto_reply_counter[sender] = 0
|
clear_history
clear_history(recipient=None, nr_messages_to_preserve=None)
Clear the chat history of the agent.
PARAMETER | DESCRIPTION |
recipient | the agent with whom the chat history to clear. If None, clear the chat history with all agents. TYPE: Agent | None DEFAULT: None |
nr_messages_to_preserve | the number of newest messages to preserve in the chat history. TYPE: int | None DEFAULT: None |
Source code in autogen/agentchat/conversable_agent.py
| def clear_history(self, recipient: Agent | None = None, nr_messages_to_preserve: int | None = None):
"""Clear the chat history of the agent.
Args:
recipient: the agent with whom the chat history to clear. If None, clear the chat history with all agents.
nr_messages_to_preserve: the number of newest messages to preserve in the chat history.
"""
iostream = IOStream.get_default()
if recipient is None:
no_messages_preserved = 0
if nr_messages_to_preserve:
for key in self._oai_messages:
nr_messages_to_preserve_internal = nr_messages_to_preserve
# if breaking history between function call and function response, save function call message
# additionally, otherwise openai will return error
first_msg_to_save = self._oai_messages[key][-nr_messages_to_preserve_internal]
if "tool_responses" in first_msg_to_save:
nr_messages_to_preserve_internal += 1
# clear_conversable_agent_history.print_preserving_message(iostream.print)
no_messages_preserved += 1
# Remove messages from history except last `nr_messages_to_preserve` messages.
self._oai_messages[key] = self._oai_messages[key][-nr_messages_to_preserve_internal:]
iostream.send(ClearConversableAgentHistoryEvent(agent=self, no_events_preserved=no_messages_preserved))
else:
self._oai_messages.clear()
else:
self._oai_messages[recipient].clear()
# clear_conversable_agent_history.print_warning(iostream.print)
if nr_messages_to_preserve:
iostream.send(ClearConversableAgentHistoryWarningEvent(recipient=self))
|
generate_oai_reply
generate_oai_reply(messages=None, sender=None, config=None)
Generate a reply using autogen.oai.
Source code in autogen/agentchat/conversable_agent.py
| def generate_oai_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: OpenAIWrapper | None = None,
) -> tuple[bool, str | dict[str, Any] | None]:
"""Generate a reply using autogen.oai."""
client = self.client if config is None else config
if client is None:
return False, None
if messages is None:
messages = self._oai_messages[sender]
extracted_response = self._generate_oai_reply_from_client(
client, self._oai_system_message + messages, self.client_cache
)
return (False, None) if extracted_response is None else (True, extracted_response)
|
a_generate_oai_reply async
a_generate_oai_reply(messages=None, sender=None, config=None)
Generate a reply using autogen.oai asynchronously.
Source code in autogen/agentchat/conversable_agent.py
| async def a_generate_oai_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, str | dict[str, Any] | None]:
"""Generate a reply using autogen.oai asynchronously."""
iostream = IOStream.get_default()
def _generate_oai_reply(
self, iostream: IOStream, *args: Any, **kwargs: Any
) -> tuple[bool, str | dict[str, Any] | None]:
with IOStream.set_default(iostream):
return self.generate_oai_reply(*args, **kwargs)
return await asyncio.get_event_loop().run_in_executor(
None,
functools.partial(
_generate_oai_reply, self=self, iostream=iostream, messages=messages, sender=sender, config=config
),
)
|
generate_code_execution_reply
generate_code_execution_reply(messages=None, sender=None, config=None)
Generate a reply using code execution.
Source code in autogen/agentchat/conversable_agent.py
| def generate_code_execution_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: dict[str, Any] | Literal[False] | None = None,
):
"""Generate a reply using code execution."""
code_execution_config = config if config is not None else self._code_execution_config
if code_execution_config is False:
return False, None
if messages is None:
messages = self._oai_messages[sender]
last_n_messages = code_execution_config.pop("last_n_messages", "auto")
if not (isinstance(last_n_messages, (int, float)) and last_n_messages >= 0) and last_n_messages != "auto":
raise ValueError("last_n_messages must be either a non-negative integer, or the string 'auto'.")
messages_to_scan = last_n_messages
if last_n_messages == "auto":
# Find when the agent last spoke
messages_to_scan = 0
for i in range(len(messages)):
message = messages[-(i + 1)]
if "role" not in message or message["role"] != "user":
break
else:
messages_to_scan += 1
# iterate through the last n messages in reverse
# if code blocks are found, execute the code blocks and return the output
# if no code blocks are found, continue
for i in range(min(len(messages), messages_to_scan)):
message = messages[-(i + 1)]
if not message["content"]:
continue
code_blocks = extract_code(message["content"])
if len(code_blocks) == 1 and code_blocks[0][0] == UNKNOWN:
continue
# found code blocks, execute code and push "last_n_messages" back
exitcode, logs = self.execute_code_blocks(code_blocks)
code_execution_config["last_n_messages"] = last_n_messages
exitcode2str = "execution succeeded" if exitcode == 0 else "execution failed"
return True, f"exitcode: {exitcode} ({exitcode2str})\nCode output: {logs}"
# no code blocks are found, push last_n_messages back and return.
code_execution_config["last_n_messages"] = last_n_messages
return False, None
|
generate_function_call_reply
generate_function_call_reply(messages=None, sender=None, config=None)
Generate a reply using function call.
"function_call" replaced by "tool_calls" as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-functions
Source code in autogen/agentchat/conversable_agent.py
| def generate_function_call_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, dict[str, Any] | None]:
"""Generate a reply using function call.
"function_call" replaced by "tool_calls" as of [OpenAI API v1.1.0](https://github.com/openai/openai-python/releases/tag/v1.1.0)
See https://platform.openai.com/docs/api-reference/chat/create#chat-create-functions
"""
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender]
message = messages[-1]
if message.get("function_call"):
call_id = message.get("id", None)
func_call = message["function_call"]
func = self._function_map.get(func_call.get("name", None), None)
if inspect.iscoroutinefunction(func):
coro = self.a_execute_function(func_call, call_id=call_id)
_, func_return = self._run_async_in_thread(coro)
else:
_, func_return = self.execute_function(message["function_call"], call_id=call_id)
return True, func_return
return False, None
|
a_generate_function_call_reply async
a_generate_function_call_reply(messages=None, sender=None, config=None)
Generate a reply using async function call.
"function_call" replaced by "tool_calls" as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-functions
Source code in autogen/agentchat/conversable_agent.py
| async def a_generate_function_call_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, dict[str, Any] | None]:
"""Generate a reply using async function call.
"function_call" replaced by "tool_calls" as of [OpenAI API v1.1.0](https://github.com/openai/openai-python/releases/tag/v1.1.0)
See https://platform.openai.com/docs/api-reference/chat/create#chat-create-functions
"""
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender]
message = messages[-1]
if "function_call" in message:
call_id = message.get("id", None)
func_call = message["function_call"]
func_name = func_call.get("name", "")
func = self._function_map.get(func_name, None)
if func and inspect.iscoroutinefunction(func):
_, func_return = await self.a_execute_function(func_call, call_id=call_id)
else:
_, func_return = self.execute_function(func_call, call_id=call_id)
return True, func_return
return False, None
|
generate_tool_calls_reply(messages=None, sender=None, config=None)
Generate a reply using tool call.
Source code in autogen/agentchat/conversable_agent.py
| def generate_tool_calls_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, dict[str, Any] | None]:
"""Generate a reply using tool call."""
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender]
message = messages[-1]
tool_returns = []
for tool_call in message.get("tool_calls", []):
function_call = tool_call.get("function", {})
tool_call_id = tool_call.get("id", None)
func = self._function_map.get(function_call.get("name", None), None)
if inspect.iscoroutinefunction(func):
coro = self.a_execute_function(function_call, call_id=tool_call_id)
_, func_return = self._run_async_in_thread(coro)
else:
_, func_return = self.execute_function(function_call, call_id=tool_call_id)
content = func_return.get("content", "")
if content is None:
content = ""
if tool_call_id is not None:
tool_call_response = {
"tool_call_id": tool_call_id,
"role": "tool",
"content": content,
}
else:
# Do not include tool_call_id if it is not present.
# This is to make the tool call object compatible with Mistral API.
tool_call_response = {
"role": "tool",
"content": content,
}
tool_returns.append(tool_call_response)
if tool_returns:
return True, {
"role": "tool",
"tool_responses": tool_returns,
"content": "\n\n".join([self._str_for_tool_response(tool_return) for tool_return in tool_returns]),
}
return False, None
|
a_generate_tool_calls_reply(messages=None, sender=None, config=None)
Generate a reply using async function call.
Source code in autogen/agentchat/conversable_agent.py
| async def a_generate_tool_calls_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, dict[str, Any] | None]:
"""Generate a reply using async function call."""
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender]
message = messages[-1]
async_tool_calls = []
for tool_call in message.get("tool_calls", []):
async_tool_calls.append(self._a_execute_tool_call(tool_call))
if async_tool_calls:
tool_returns = await asyncio.gather(*async_tool_calls)
return True, {
"role": "tool",
"tool_responses": tool_returns,
"content": "\n\n".join([self._str_for_tool_response(tool_return) for tool_return in tool_returns]),
}
return False, None
|
check_termination_and_human_reply
check_termination_and_human_reply(messages=None, sender=None, config=None)
Check if the conversation should be terminated, and if human reply is provided.
This method checks for conditions that require the conversation to be terminated, such as reaching a maximum number of consecutive auto-replies or encountering a termination message. Additionally, it prompts for and processes human input based on the configured human input mode, which can be 'ALWAYS', 'NEVER', or 'TERMINATE'. The method also manages the consecutive auto-reply counter for the conversation and prints relevant messages based on the human input received.
PARAMETER | DESCRIPTION |
messages | A list of message dictionaries, representing the conversation history. TYPE: list[dict[str, Any]] | None DEFAULT: None |
sender | The agent object representing the sender of the message. TYPE: Agent | None DEFAULT: None |
config | Configuration object, defaults to the current instance if not provided. TYPE: Any | None DEFAULT: None |
RETURNS | DESCRIPTION |
bool | A tuple containing a boolean indicating if the conversation |
str | None | should be terminated, and a human reply which can be a string, a dictionary, or None. |
Source code in autogen/agentchat/conversable_agent.py
| def check_termination_and_human_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, str | None]:
"""Check if the conversation should be terminated, and if human reply is provided.
This method checks for conditions that require the conversation to be terminated, such as reaching
a maximum number of consecutive auto-replies or encountering a termination message. Additionally,
it prompts for and processes human input based on the configured human input mode, which can be
'ALWAYS', 'NEVER', or 'TERMINATE'. The method also manages the consecutive auto-reply counter
for the conversation and prints relevant messages based on the human input received.
Args:
messages: A list of message dictionaries, representing the conversation history.
sender: The agent object representing the sender of the message.
config: Configuration object, defaults to the current instance if not provided.
Returns:
A tuple containing a boolean indicating if the conversation
should be terminated, and a human reply which can be a string, a dictionary, or None.
"""
iostream = IOStream.get_default()
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender] if sender else []
termination_reason = None
# if there are no messages, continue the conversation
if not messages:
return False, None
message = messages[-1]
reply = ""
no_human_input_msg = ""
sender_name = "the sender" if sender is None else sender.name
if self.human_input_mode == "ALWAYS":
reply = self.get_human_input(
f"Replying as {self.name}. Provide feedback to {sender_name}. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: "
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
if not reply and self._is_termination_msg(message):
termination_reason = f"Termination message condition on agent '{self.name}' met"
elif reply == "exit":
termination_reason = "User requested to end the conversation"
reply = reply if reply or not self._is_termination_msg(message) else "exit"
else:
if self._consecutive_auto_reply_counter[sender] >= self._max_consecutive_auto_reply_dict[sender]:
if self.human_input_mode == "NEVER":
termination_reason = "Maximum number of consecutive auto-replies reached"
reply = "exit"
else:
# self.human_input_mode == "TERMINATE":
terminate = self._is_termination_msg(message)
reply = self.get_human_input(
f"Please give feedback to {sender_name}. Press enter or type 'exit' to stop the conversation: "
if terminate
else f"Please give feedback to {sender_name}. Press enter to skip and use auto-reply, or type 'exit' to stop the conversation: "
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
if reply != "exit" and terminate:
termination_reason = (
f"Termination message condition on agent '{self.name}' met and no human input provided"
)
elif reply == "exit":
termination_reason = "User requested to end the conversation"
reply = reply if reply or not terminate else "exit"
elif self._is_termination_msg(message):
if self.human_input_mode == "NEVER":
termination_reason = f"Termination message condition on agent '{self.name}' met"
reply = "exit"
else:
# self.human_input_mode == "TERMINATE":
reply = self.get_human_input(
f"Please give feedback to {sender_name}. Press enter or type 'exit' to stop the conversation: "
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
if not reply or reply == "exit":
termination_reason = (
f"Termination message condition on agent '{self.name}' met and no human input provided"
)
reply = reply or "exit"
# print the no_human_input_msg
if no_human_input_msg:
iostream.send(
TerminationAndHumanReplyNoInputEvent(
no_human_input_msg=no_human_input_msg, sender=sender, recipient=self
)
)
# stop the conversation
if reply == "exit":
# reset the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] = 0
if termination_reason:
iostream.send(TerminationEvent(termination_reason=termination_reason, sender=self, recipient=sender))
return True, None
# send the human reply
if reply or self._max_consecutive_auto_reply_dict[sender] == 0:
# reset the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] = 0
# User provided a custom response, return function and tool failures indicating user interruption
tool_returns = []
if message.get("function_call", False):
tool_returns.append({
"role": "function",
"name": message["function_call"].get("name", ""),
"content": "USER INTERRUPTED",
})
if message.get("tool_calls", False):
tool_returns.extend([
{"role": "tool", "tool_call_id": tool_call.get("id", ""), "content": "USER INTERRUPTED"}
for tool_call in message["tool_calls"]
])
response = {"role": "user", "content": reply}
if tool_returns:
response["tool_responses"] = tool_returns
return True, response
# increment the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] += 1
if self.human_input_mode != "NEVER":
iostream.send(UsingAutoReplyEvent(human_input_mode=self.human_input_mode, sender=sender, recipient=self))
return False, None
|
a_check_termination_and_human_reply async
a_check_termination_and_human_reply(messages=None, sender=None, config=None)
(async) Check if the conversation should be terminated, and if human reply is provided.
This method checks for conditions that require the conversation to be terminated, such as reaching a maximum number of consecutive auto-replies or encountering a termination message. Additionally, it prompts for and processes human input based on the configured human input mode, which can be 'ALWAYS', 'NEVER', or 'TERMINATE'. The method also manages the consecutive auto-reply counter for the conversation and prints relevant messages based on the human input received.
PARAMETER | DESCRIPTION |
messages | A list of message dictionaries, representing the conversation history. TYPE: Optional[List[Dict]] DEFAULT: None |
sender | The agent object representing the sender of the message. TYPE: Optional[Agent] DEFAULT: None |
config | Configuration object, defaults to the current instance if not provided. TYPE: Optional[Any] DEFAULT: None |
RETURNS | DESCRIPTION |
bool | Tuple[bool, Union[str, Dict, None]]: A tuple containing a boolean indicating if the conversation |
str | None | should be terminated, and a human reply which can be a string, a dictionary, or None. |
Source code in autogen/agentchat/conversable_agent.py
| async def a_check_termination_and_human_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Agent | None = None,
config: Any | None = None,
) -> tuple[bool, str | None]:
"""(async) Check if the conversation should be terminated, and if human reply is provided.
This method checks for conditions that require the conversation to be terminated, such as reaching
a maximum number of consecutive auto-replies or encountering a termination message. Additionally,
it prompts for and processes human input based on the configured human input mode, which can be
'ALWAYS', 'NEVER', or 'TERMINATE'. The method also manages the consecutive auto-reply counter
for the conversation and prints relevant messages based on the human input received.
Args:
messages (Optional[List[Dict]]): A list of message dictionaries, representing the conversation history.
sender (Optional[Agent]): The agent object representing the sender of the message.
config (Optional[Any]): Configuration object, defaults to the current instance if not provided.
Returns:
Tuple[bool, Union[str, Dict, None]]: A tuple containing a boolean indicating if the conversation
should be terminated, and a human reply which can be a string, a dictionary, or None.
"""
iostream = IOStream.get_default()
if config is None:
config = self
if messages is None:
messages = self._oai_messages[sender] if sender else []
termination_reason = None
message = messages[-1] if messages else {}
reply = ""
no_human_input_msg = ""
sender_name = "the sender" if sender is None else sender.name
if self.human_input_mode == "ALWAYS":
reply = await self.a_get_human_input(
f"Replying as {self.name}. Provide feedback to {sender_name}. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: "
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
if not reply and self._is_termination_msg(message):
termination_reason = f"Termination message condition on agent '{self.name}' met"
elif reply == "exit":
termination_reason = "User requested to end the conversation"
reply = reply if reply or not self._is_termination_msg(message) else "exit"
else:
if self._consecutive_auto_reply_counter[sender] >= self._max_consecutive_auto_reply_dict[sender]:
if self.human_input_mode == "NEVER":
termination_reason = "Maximum number of consecutive auto-replies reached"
reply = "exit"
else:
# self.human_input_mode == "TERMINATE":
terminate = self._is_termination_msg(message)
reply = await self.a_get_human_input(
f"Please give feedback to {sender_name}. Press enter or type 'exit' to stop the conversation: "
if terminate
else f"Please give feedback to {sender_name}. Press enter to skip and use auto-reply, or type 'exit' to stop the conversation: "
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
if reply != "exit" and terminate:
termination_reason = (
f"Termination message condition on agent '{self.name}' met and no human input provided"
)
elif reply == "exit":
termination_reason = "User requested to end the conversation"
reply = reply if reply or not terminate else "exit"
elif self._is_termination_msg(message):
if self.human_input_mode == "NEVER":
termination_reason = f"Termination message condition on agent '{self.name}' met"
reply = "exit"
else:
# self.human_input_mode == "TERMINATE":
reply = await self.a_get_human_input(
f"Please give feedback to {sender_name}. Press enter or type 'exit' to stop the conversation: "
)
no_human_input_msg = "NO HUMAN INPUT RECEIVED." if not reply else ""
# if the human input is empty, and the message is a termination message, then we will terminate the conversation
if not reply or reply == "exit":
termination_reason = (
f"Termination message condition on agent '{self.name}' met and no human input provided"
)
reply = reply or "exit"
# print the no_human_input_msg
if no_human_input_msg:
iostream.send(
TerminationAndHumanReplyNoInputEvent(
no_human_input_msg=no_human_input_msg, sender=sender, recipient=self
)
)
# stop the conversation
if reply == "exit":
# reset the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] = 0
if termination_reason:
iostream.send(TerminationEvent(termination_reason=termination_reason, sender=self, recipient=sender))
return True, None
# send the human reply
if reply or self._max_consecutive_auto_reply_dict[sender] == 0:
# User provided a custom response, return function and tool results indicating user interruption
# reset the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] = 0
tool_returns = []
if message.get("function_call", False):
tool_returns.append({
"role": "function",
"name": message["function_call"].get("name", ""),
"content": "USER INTERRUPTED",
})
if message.get("tool_calls", False):
tool_returns.extend([
{"role": "tool", "tool_call_id": tool_call.get("id", ""), "content": "USER INTERRUPTED"}
for tool_call in message["tool_calls"]
])
response = {"role": "user", "content": reply}
if tool_returns:
response["tool_responses"] = tool_returns
return True, response
# increment the consecutive_auto_reply_counter
self._consecutive_auto_reply_counter[sender] += 1
if self.human_input_mode != "NEVER":
iostream.send(UsingAutoReplyEvent(human_input_mode=self.human_input_mode, sender=sender, recipient=self))
return False, None
|
generate_reply
generate_reply(messages=None, sender=None, **kwargs)
Reply based on the conversation history and the sender.
Either messages or sender must be provided. Register a reply_func with None
as one trigger for it to be activated when messages
is non-empty and sender
is None
. Use registered auto reply functions to generate replies. By default, the following functions are checked in order: 1. check_termination_and_human_reply 2. generate_function_call_reply (deprecated in favor of tool_calls) 3. generate_tool_calls_reply 4. generate_code_execution_reply 5. generate_oai_reply Every function returns a tuple (final, reply). When a function returns final=False, the next function will be checked. So by default, termination and human reply will be checked first. If not terminating and human reply is skipped, execute function or code and return the result. AI replies are generated only when no code execution is performed.
PARAMETER | DESCRIPTION |
messages | a list of messages in the conversation history. TYPE: list[dict[str, Any]] | None DEFAULT: None |
sender | sender of an Agent instance. TYPE: Optional[Agent] DEFAULT: None |
**kwargs | Additional arguments to customize reply generation. Supported kwargs: - exclude (List[Callable[..., Any]]): A list of reply functions to exclude from the reply generation process. Functions in this list will be skipped even if they would normally be triggered. TYPE: Any DEFAULT: {} |
RETURNS | DESCRIPTION |
str | dict[str, Any] | None | str or dict or None: reply. None if no reply is generated. |
Source code in autogen/agentchat/conversable_agent.py
| def generate_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Optional["Agent"] = None,
**kwargs: Any,
) -> str | dict[str, Any] | None:
"""Reply based on the conversation history and the sender.
Either messages or sender must be provided.
Register a reply_func with `None` as one trigger for it to be activated when `messages` is non-empty and `sender` is `None`.
Use registered auto reply functions to generate replies.
By default, the following functions are checked in order:
1. check_termination_and_human_reply
2. generate_function_call_reply (deprecated in favor of tool_calls)
3. generate_tool_calls_reply
4. generate_code_execution_reply
5. generate_oai_reply
Every function returns a tuple (final, reply).
When a function returns final=False, the next function will be checked.
So by default, termination and human reply will be checked first.
If not terminating and human reply is skipped, execute function or code and return the result.
AI replies are generated only when no code execution is performed.
Args:
messages: a list of messages in the conversation history.
sender: sender of an Agent instance.
**kwargs (Any): Additional arguments to customize reply generation. Supported kwargs:
- exclude (List[Callable[..., Any]]): A list of reply functions to exclude from
the reply generation process. Functions in this list will be skipped even if
they would normally be triggered.
Returns:
str or dict or None: reply. None if no reply is generated.
"""
if all((messages is None, sender is None)):
error_msg = f"Either {messages=} or {sender=} must be provided."
logger.error(error_msg)
raise AssertionError(error_msg)
if messages is None:
messages = self._oai_messages[sender]
# Call the hookable method that gives registered hooks a chance to update agent state, used for their context variables.
self.update_agent_state_before_reply(messages)
# Call the hookable method that gives registered hooks a chance to process the last message.
# Message modifications do not affect the incoming messages or self._oai_messages.
messages = self.process_last_received_message(messages)
# Call the hookable method that gives registered hooks a chance to process all messages.
# Message modifications do not affect the incoming messages or self._oai_messages.
messages = self.process_all_messages_before_reply(messages)
for reply_func_tuple in self._reply_func_list:
reply_func = reply_func_tuple["reply_func"]
if "exclude" in kwargs and reply_func in kwargs["exclude"]:
continue
if inspect.iscoroutinefunction(reply_func):
continue
if self._match_trigger(reply_func_tuple["trigger"], sender):
final, reply = reply_func(self, messages=messages, sender=sender, config=reply_func_tuple["config"])
if logging_enabled():
log_event(
self,
"reply_func_executed",
reply_func_module=reply_func.__module__,
reply_func_name=reply_func.__name__,
final=final,
reply=reply,
)
if final:
return reply
return self._default_auto_reply
|
a_generate_reply async
a_generate_reply(messages=None, sender=None, **kwargs)
(async) Reply based on the conversation history and the sender.
Either messages or sender must be provided. Register a reply_func with None
as one trigger for it to be activated when messages
is non-empty and sender
is None
. Use registered auto reply functions to generate replies. By default, the following functions are checked in order: 1. check_termination_and_human_reply 2. generate_function_call_reply 3. generate_tool_calls_reply 4. generate_code_execution_reply 5. generate_oai_reply Every function returns a tuple (final, reply). When a function returns final=False, the next function will be checked. So by default, termination and human reply will be checked first. If not terminating and human reply is skipped, execute function or code and return the result. AI replies are generated only when no code execution is performed.
PARAMETER | DESCRIPTION |
messages | a list of messages in the conversation history. TYPE: list[dict[str, Any]] | None DEFAULT: None |
sender | sender of an Agent instance. TYPE: Optional[Agent] DEFAULT: None |
**kwargs | Additional arguments to customize reply generation. Supported kwargs: - exclude (List[Callable[..., Any]]): A list of reply functions to exclude from the reply generation process. Functions in this list will be skipped even if they would normally be triggered. TYPE: Any DEFAULT: {} |
RETURNS | DESCRIPTION |
str | dict[str, Any] | None | str or dict or None: reply. None if no reply is generated. |
Source code in autogen/agentchat/conversable_agent.py
| async def a_generate_reply(
self,
messages: list[dict[str, Any]] | None = None,
sender: Optional["Agent"] = None,
**kwargs: Any,
) -> str | dict[str, Any] | None:
"""(async) Reply based on the conversation history and the sender.
Either messages or sender must be provided.
Register a reply_func with `None` as one trigger for it to be activated when `messages` is non-empty and `sender` is `None`.
Use registered auto reply functions to generate replies.
By default, the following functions are checked in order:
1. check_termination_and_human_reply
2. generate_function_call_reply
3. generate_tool_calls_reply
4. generate_code_execution_reply
5. generate_oai_reply
Every function returns a tuple (final, reply).
When a function returns final=False, the next function will be checked.
So by default, termination and human reply will be checked first.
If not terminating and human reply is skipped, execute function or code and return the result.
AI replies are generated only when no code execution is performed.
Args:
messages: a list of messages in the conversation history.
sender: sender of an Agent instance.
**kwargs (Any): Additional arguments to customize reply generation. Supported kwargs:
- exclude (List[Callable[..., Any]]): A list of reply functions to exclude from
the reply generation process. Functions in this list will be skipped even if
they would normally be triggered.
Returns:
str or dict or None: reply. None if no reply is generated.
"""
if all((messages is None, sender is None)):
error_msg = f"Either {messages=} or {sender=} must be provided."
logger.error(error_msg)
raise AssertionError(error_msg)
if messages is None:
messages = self._oai_messages[sender]
# Call the hookable method that gives registered hooks a chance to update agent state, used for their context variables.
self.update_agent_state_before_reply(messages)
# Call the hookable method that gives registered hooks a chance to process the last message.
# Message modifications do not affect the incoming messages or self._oai_messages.
messages = self.process_last_received_message(messages)
# Call the hookable method that gives registered hooks a chance to process all messages.
# Message modifications do not affect the incoming messages or self._oai_messages.
messages = self.process_all_messages_before_reply(messages)
for reply_func_tuple in self._reply_func_list:
reply_func = reply_func_tuple["reply_func"]
if "exclude" in kwargs and reply_func in kwargs["exclude"]:
continue
if self._match_trigger(reply_func_tuple["trigger"], sender):
if inspect.iscoroutinefunction(reply_func):
final, reply = await reply_func(
self, messages=messages, sender=sender, config=reply_func_tuple["config"]
)
else:
final, reply = reply_func(self, messages=messages, sender=sender, config=reply_func_tuple["config"])
if final:
return reply
return self._default_auto_reply
|
Get human input.
Override this method to customize the way to get human input.
PARAMETER | DESCRIPTION |
prompt | prompt for the human input. TYPE: str |
RETURNS | DESCRIPTION |
str | TYPE: str |
Source code in autogen/agentchat/conversable_agent.py
| def get_human_input(self, prompt: str) -> str:
"""Get human input.
Override this method to customize the way to get human input.
Args:
prompt (str): prompt for the human input.
Returns:
str: human input.
"""
iostream = IOStream.get_default()
reply = iostream.input(prompt)
self._human_input.append(reply)
return reply
|
a_get_human_input(prompt)
(Async) Get human input.
Override this method to customize the way to get human input.
PARAMETER | DESCRIPTION |
prompt | prompt for the human input. TYPE: str |
RETURNS | DESCRIPTION |
str | TYPE: str |
Source code in autogen/agentchat/conversable_agent.py
| async def a_get_human_input(self, prompt: str) -> str:
"""(Async) Get human input.
Override this method to customize the way to get human input.
Args:
prompt (str): prompt for the human input.
Returns:
str: human input.
"""
iostream = IOStream.get_default()
input_func = iostream.input
if is_coroutine_callable(input_func):
reply = await input_func(prompt)
else:
reply = await asyncio.to_thread(input_func, prompt)
self._human_input.append(reply)
return reply
|
run_code
Run the code and return the result.
Override this function to modify the way to run the code.
PARAMETER | DESCRIPTION |
code | TYPE: str |
**kwargs | TYPE: Any DEFAULT: {} |
RETURNS | DESCRIPTION |
int | A tuple of (exitcode, logs, image). |
exitcode | the exit code of the code execution. TYPE: int |
logs | the logs of the code execution. TYPE: str |
image | the docker image used for the code execution. TYPE: str or None |
Source code in autogen/agentchat/conversable_agent.py
| def run_code(self, code: str, **kwargs: Any) -> tuple[int, str, str | None]:
"""Run the code and return the result.
Override this function to modify the way to run the code.
Args:
code (str): the code to be executed.
**kwargs: other keyword arguments.
Returns:
A tuple of (exitcode, logs, image).
exitcode (int): the exit code of the code execution.
logs (str): the logs of the code execution.
image (str or None): the docker image used for the code execution.
"""
return execute_code(code, **kwargs)
|
execute_code_blocks
execute_code_blocks(code_blocks)
Execute the code blocks and return the result.
Source code in autogen/agentchat/conversable_agent.py
| def execute_code_blocks(self, code_blocks):
"""Execute the code blocks and return the result."""
iostream = IOStream.get_default()
logs_all = ""
for i, code_block in enumerate(code_blocks):
lang, code = code_block
if not lang:
lang = infer_lang(code)
iostream.send(ExecuteCodeBlockEvent(code=code, language=lang, code_block_count=i, recipient=self))
if lang in ["bash", "shell", "sh"]:
exitcode, logs, image = self.run_code(code, lang=lang, **self._code_execution_config)
elif lang in PYTHON_VARIANTS:
filename = code[11 : code.find("\n")].strip() if code.startswith("# filename: ") else None
exitcode, logs, image = self.run_code(
code,
lang="python",
filename=filename,
**self._code_execution_config,
)
else:
# In case the language is not supported, we return an error message.
exitcode, logs, image = (
1,
f"unknown language {lang}",
None,
)
# raise NotImplementedError
if image is not None:
self._code_execution_config["use_docker"] = image
logs_all += "\n" + logs
if exitcode != 0:
return exitcode, logs_all
return exitcode, logs_all
|
execute_function
execute_function(func_call, call_id=None, verbose=False)
Execute a function call and return the result.
Override this function to modify the way to execute function and tool calls.
PARAMETER | DESCRIPTION |
func_call | a dictionary extracted from openai message at "function_call" or "tool_calls" with keys "name" and "arguments". TYPE: dict[str, Any] |
call_id | a string to identify the tool call. TYPE: str | None DEFAULT: None |
verbose | Whether to send messages about the execution details to the output stream. When True, both the function call arguments and the execution result will be displayed. Defaults to False. TYPE: bool DEFAULT: False |
RETURNS | DESCRIPTION |
bool | A tuple of (is_exec_success, result_dict). |
is_exec_success | whether the execution is successful. TYPE: boolean |
result_dict | a dictionary with keys "name", "role", and "content". Value of "role" is "function". TYPE: tuple[bool, dict[str, Any]] |
"function_call" deprecated as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call
Source code in autogen/agentchat/conversable_agent.py
| def execute_function(
self, func_call: dict[str, Any], call_id: str | None = None, verbose: bool = False
) -> tuple[bool, dict[str, Any]]:
"""Execute a function call and return the result.
Override this function to modify the way to execute function and tool calls.
Args:
func_call: a dictionary extracted from openai message at "function_call" or "tool_calls" with keys "name" and "arguments".
call_id: a string to identify the tool call.
verbose (bool): Whether to send messages about the execution details to the
output stream. When True, both the function call arguments and the execution
result will be displayed. Defaults to False.
Returns:
A tuple of (is_exec_success, result_dict).
is_exec_success (boolean): whether the execution is successful.
result_dict: a dictionary with keys "name", "role", and "content". Value of "role" is "function".
"function_call" deprecated as of [OpenAI API v1.1.0](https://github.com/openai/openai-python/releases/tag/v1.1.0)
See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call
"""
iostream = IOStream.get_default()
func_name = func_call.get("name", "")
func = self._function_map.get(func_name, None)
is_exec_success = False
if func is not None:
# Extract arguments from a json-like string and put it into a dict.
input_string = self._format_json_str(func_call.get("arguments", "{}"))
try:
arguments = json.loads(input_string)
except json.JSONDecodeError as e:
arguments = None
content = f"Error: {e}\n The argument must be in JSON format."
# Try to execute the function
if arguments is not None:
iostream.send(
ExecuteFunctionEvent(func_name=func_name, call_id=call_id, arguments=arguments, recipient=self)
)
try:
content = func(**arguments)
is_exec_success = True
except Exception as e:
content = f"Error: {e}"
else:
arguments = {}
content = f"Error: Function {func_name} not found."
iostream.send(
ExecutedFunctionEvent(
func_name=func_name,
call_id=call_id,
arguments=arguments,
content=content,
recipient=self,
is_exec_success=is_exec_success,
)
)
return is_exec_success, {
"name": func_name,
"role": "function",
"content": content,
}
|
a_execute_function async
a_execute_function(func_call, call_id=None, verbose=False)
Execute an async function call and return the result.
Override this function to modify the way async functions and tools are executed.
PARAMETER | DESCRIPTION |
func_call | a dictionary extracted from openai message at key "function_call" or "tool_calls" with keys "name" and "arguments". TYPE: dict[str, Any] |
call_id | a string to identify the tool call. TYPE: str | None DEFAULT: None |
verbose | Whether to send messages about the execution details to the output stream. When True, both the function call arguments and the execution result will be displayed. Defaults to False. TYPE: bool DEFAULT: False |
RETURNS | DESCRIPTION |
bool | A tuple of (is_exec_success, result_dict). |
is_exec_success | whether the execution is successful. TYPE: boolean |
result_dict | a dictionary with keys "name", "role", and "content". Value of "role" is "function". TYPE: tuple[bool, dict[str, Any]] |
"function_call" deprecated as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call
Source code in autogen/agentchat/conversable_agent.py
| async def a_execute_function(
self, func_call: dict[str, Any], call_id: str | None = None, verbose: bool = False
) -> tuple[bool, dict[str, Any]]:
"""Execute an async function call and return the result.
Override this function to modify the way async functions and tools are executed.
Args:
func_call: a dictionary extracted from openai message at key "function_call" or "tool_calls" with keys "name" and "arguments".
call_id: a string to identify the tool call.
verbose (bool): Whether to send messages about the execution details to the
output stream. When True, both the function call arguments and the execution
result will be displayed. Defaults to False.
Returns:
A tuple of (is_exec_success, result_dict).
is_exec_success (boolean): whether the execution is successful.
result_dict: a dictionary with keys "name", "role", and "content". Value of "role" is "function".
"function_call" deprecated as of [OpenAI API v1.1.0](https://github.com/openai/openai-python/releases/tag/v1.1.0)
See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call
"""
iostream = IOStream.get_default()
func_name = func_call.get("name", "")
func = self._function_map.get(func_name, None)
is_exec_success = False
if func is not None:
# Extract arguments from a json-like string and put it into a dict.
input_string = self._format_json_str(func_call.get("arguments", "{}"))
try:
arguments = json.loads(input_string)
except json.JSONDecodeError as e:
arguments = None
content = f"Error: {e}\n The argument must be in JSON format."
# Try to execute the function
if arguments is not None:
iostream.send(
ExecuteFunctionEvent(func_name=func_name, call_id=call_id, arguments=arguments, recipient=self)
)
try:
if inspect.iscoroutinefunction(func):
content = await func(**arguments)
else:
# Fallback to sync function if the function is not async
content = func(**arguments)
is_exec_success = True
except Exception as e:
content = f"Error: {e}"
else:
arguments = {}
content = f"Error: Function {func_name} not found."
iostream.send(
ExecutedFunctionEvent(
func_name=func_name,
call_id=call_id,
arguments=arguments,
content=content,
recipient=self,
is_exec_success=is_exec_success,
)
)
return is_exec_success, {
"name": func_name,
"role": "function",
"content": content,
}
|
generate_init_message
generate_init_message(message, **kwargs)
Generate the initial message for the agent. If message is None, input() will be called to get the initial message.
PARAMETER | DESCRIPTION |
message | the message to be processed. TYPE: str or None |
**kwargs | any additional information. It has the following reserved fields: "carryover": a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string. If provided, we will combine this carryover with the "message" content when generating the initial chat message. TYPE: Any DEFAULT: {} |
RETURNS | DESCRIPTION |
str | dict[str, Any] | str or dict: the processed message. |
Source code in autogen/agentchat/conversable_agent.py
| def generate_init_message(self, message: dict[str, Any] | str | None, **kwargs: Any) -> str | dict[str, Any]:
"""Generate the initial message for the agent.
If message is None, input() will be called to get the initial message.
Args:
message (str or None): the message to be processed.
**kwargs: any additional information. It has the following reserved fields:
"carryover": a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string.
If provided, we will combine this carryover with the "message" content when generating the initial chat
message.
Returns:
str or dict: the processed message.
"""
if message is None:
message = self.get_human_input(">")
return self._handle_carryover(message, kwargs)
|
a_generate_init_message async
a_generate_init_message(message, **kwargs)
Generate the initial message for the agent. If message is None, input() will be called to get the initial message.
PARAMETER | DESCRIPTION |
message | the message to be processed. TYPE: str or None |
**kwargs | any additional information. It has the following reserved fields: "carryover": a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string. If provided, we will combine this carryover with the "message" content when generating the initial chat message. TYPE: Any DEFAULT: {} |
RETURNS | DESCRIPTION |
str | dict[str, Any] | str or dict: the processed message. |
Source code in autogen/agentchat/conversable_agent.py
| async def a_generate_init_message(
self, message: dict[str, Any] | str | None, **kwargs: Any
) -> str | dict[str, Any]:
"""Generate the initial message for the agent.
If message is None, input() will be called to get the initial message.
Args:
message (str or None): the message to be processed.
**kwargs: any additional information. It has the following reserved fields:
"carryover": a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string.
If provided, we will combine this carryover with the "message" content when generating the initial chat
message.
Returns:
str or dict: the processed message.
"""
if message is None:
message = await self.a_get_human_input(">")
return self._handle_carryover(message, kwargs)
|
remove_tool_for_llm(tool)
Remove a tool (register for LLM tool)
Source code in autogen/agentchat/conversable_agent.py
| def remove_tool_for_llm(self, tool: Tool) -> None:
"""Remove a tool (register for LLM tool)"""
try:
self._register_for_llm(tool=tool, api_style="tool", is_remove=True)
self._tools.remove(tool)
except ValueError:
raise ValueError(f"Tool {tool} not found in collection")
|
register_function
register_function(function_map, silent_override=False)
Register functions to the agent.
PARAMETER | DESCRIPTION |
function_map | a dictionary mapping function names to functions. if function_map[name] is None, the function will be removed from the function_map. TYPE: dict[str, Callable[..., Any]] |
silent_override | whether to print warnings when overriding functions. TYPE: bool DEFAULT: False |
Source code in autogen/agentchat/conversable_agent.py
| def register_function(self, function_map: dict[str, Callable[..., Any]], silent_override: bool = False):
"""Register functions to the agent.
Args:
function_map: a dictionary mapping function names to functions. if function_map[name] is None, the function will be removed from the function_map.
silent_override: whether to print warnings when overriding functions.
"""
for name, func in function_map.items():
self._assert_valid_name(name)
if func is None and name not in self._function_map:
warnings.warn(f"The function {name} to remove doesn't exist", name)
if not silent_override and name in self._function_map:
warnings.warn(f"Function '{name}' is being overridden.", UserWarning)
self._function_map.update(function_map)
self._function_map = {k: v for k, v in self._function_map.items() if v is not None}
|
update_function_signature
update_function_signature(func_sig, is_remove=False, silent_override=False)
Update a function_signature in the LLM configuration for function_call.
PARAMETER | DESCRIPTION |
func_sig | description/name of the function to update/remove to the model. See: https://platform.openai.com/docs/api-reference/chat/create#chat/create-functions TYPE: str or dict |
is_remove | whether removing the function from llm_config with name 'func_sig' TYPE: bool DEFAULT: False |
silent_override | whether to print warnings when overriding functions. TYPE: bool DEFAULT: False |
Deprecated as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call
Source code in autogen/agentchat/conversable_agent.py
| def update_function_signature(
self, func_sig: str | dict[str, Any], is_remove: bool = False, silent_override: bool = False
):
"""Update a function_signature in the LLM configuration for function_call.
Args:
func_sig (str or dict): description/name of the function to update/remove to the model. See: https://platform.openai.com/docs/api-reference/chat/create#chat/create-functions
is_remove: whether removing the function from llm_config with name 'func_sig'
silent_override: whether to print warnings when overriding functions.
Deprecated as of [OpenAI API v1.1.0](https://github.com/openai/openai-python/releases/tag/v1.1.0)
See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call
"""
if not isinstance(self.llm_config, (dict, LLMConfig)):
error_msg = "To update a function signature, agent must have an llm_config"
logger.error(error_msg)
raise AssertionError(error_msg)
if is_remove:
if "functions" not in self.llm_config or len(self.llm_config["functions"]) == 0:
error_msg = f"The agent config doesn't have function {func_sig}."
logger.error(error_msg)
raise AssertionError(error_msg)
else:
self.llm_config["functions"] = [
func for func in self.llm_config["functions"] if func["name"] != func_sig
]
else:
if not isinstance(func_sig, dict):
raise ValueError(
f"The function signature must be of the type dict. Received function signature type {type(func_sig)}"
)
if "name" not in func_sig:
raise ValueError(f"The function signature must have a 'name' key. Received: {func_sig}")
self._assert_valid_name(func_sig["name"]), func_sig
if "functions" in self.llm_config:
if not silent_override and any(
func["name"] == func_sig["name"] for func in self.llm_config["functions"]
):
warnings.warn(f"Function '{func_sig['name']}' is being overridden.", UserWarning)
self.llm_config["functions"] = [
func for func in self.llm_config["functions"] if func.get("name") != func_sig["name"]
] + [func_sig]
else:
self.llm_config["functions"] = [func_sig]
# Do this only if llm_config is a dict. If llm_config is LLMConfig, LLMConfig will handle this.
if len(self.llm_config["functions"]) == 0 and isinstance(self.llm_config, dict):
del self.llm_config["functions"]
self.client = OpenAIWrapper(**self.llm_config)
|
update_tool_signature(tool_sig, is_remove, silent_override=False)
Update a tool_signature in the LLM configuration for tool_call.
PARAMETER | DESCRIPTION |
tool_sig | description/name of the tool to update/remove to the model. See: https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools TYPE: str or dict |
is_remove | whether removing the tool from llm_config with name 'tool_sig' TYPE: bool |
silent_override | whether to print warnings when overriding functions. TYPE: bool DEFAULT: False |
Source code in autogen/agentchat/conversable_agent.py
| def update_tool_signature(self, tool_sig: str | dict[str, Any], is_remove: bool, silent_override: bool = False):
"""Update a tool_signature in the LLM configuration for tool_call.
Args:
tool_sig (str or dict): description/name of the tool to update/remove to the model. See: https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools
is_remove: whether removing the tool from llm_config with name 'tool_sig'
silent_override: whether to print warnings when overriding functions.
"""
if not self.llm_config:
error_msg = "To update a tool signature, agent must have an llm_config"
logger.error(error_msg)
raise AssertionError(error_msg)
if is_remove:
if "tools" not in self.llm_config or len(self.llm_config["tools"]) == 0:
error_msg = f"The agent config doesn't have tool {tool_sig}."
logger.error(error_msg)
raise AssertionError(error_msg)
else:
current_tools = self.llm_config["tools"]
filtered_tools = []
# Loop through and rebuild tools list without the tool to remove
for tool in current_tools:
tool_name = tool["function"]["name"]
# Match by tool name, or by tool signature
is_different = tool_name != tool_sig if isinstance(tool_sig, str) else tool != tool_sig
if is_different:
filtered_tools.append(tool)
self.llm_config["tools"] = filtered_tools
else:
if not isinstance(tool_sig, dict):
raise ValueError(
f"The tool signature must be of the type dict. Received tool signature type {type(tool_sig)}"
)
self._assert_valid_name(tool_sig["function"]["name"])
if "tools" in self.llm_config and len(self.llm_config["tools"]) > 0:
if not silent_override and any(
tool["function"]["name"] == tool_sig["function"]["name"] for tool in self.llm_config["tools"]
):
warnings.warn(f"Function '{tool_sig['function']['name']}' is being overridden.", UserWarning)
self.llm_config["tools"] = [
tool
for tool in self.llm_config["tools"]
if tool.get("function", {}).get("name") != tool_sig["function"]["name"]
] + [tool_sig]
else:
self.llm_config["tools"] = [tool_sig]
# Do this only if llm_config is a dict. If llm_config is LLMConfig, LLMConfig will handle this.
if len(self.llm_config["tools"]) == 0 and isinstance(self.llm_config, dict):
del self.llm_config["tools"]
self.client = OpenAIWrapper(**self.llm_config)
|
can_execute_function
can_execute_function(name)
Whether the agent can execute the function.
Source code in autogen/agentchat/conversable_agent.py
| def can_execute_function(self, name: list[str] | str) -> bool:
"""Whether the agent can execute the function."""
names = name if isinstance(name, list) else [name]
return all(n in self._function_map for n in names)
|
register_for_llm
register_for_llm(*, name=None, description=None, api_style='tool', silent_override=False)
Decorator factory for registering a function to be used by an agent.
It's return value is used to decorate a function to be registered to the agent. The function uses type hints to specify the arguments and return type. The function name is used as the default name for the function, but a custom name can be provided. The function description is used to describe the function in the agent's configuration.
PARAMETER | DESCRIPTION |
name | name of the function. If None, the function name will be used (default: None). TYPE: optional(str DEFAULT: None |
description | description of the function (default: None). It is mandatory for the initial decorator, but the following ones can omit it. TYPE: optional(str DEFAULT: None |
api_style | (literal): the API style for function call. For Azure OpenAI API, use version 2023-12-01-preview or later. "function" style will be deprecated. For earlier version use "function" if "tool" doesn't work. See Azure OpenAI documentation for details. TYPE: Literal['function', 'tool'] DEFAULT: 'tool' |
silent_override | whether to suppress any override warning messages. TYPE: bool DEFAULT: False |
RETURNS | DESCRIPTION |
Callable[[F | Tool], Tool] | The decorator for registering a function to be used by an agent. |
Examples:
@user_proxy.register_for_execution()
@agent2.register_for_llm()
@agent1.register_for_llm(description="This is a very useful function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14) -> str:
return a + str(b * c)
For Azure OpenAI versions prior to 2023-12-01-preview, set api_style
to "function"
if "tool"
doesn't work:
@agent2.register_for_llm(api_style="function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14) -> str:
return a + str(b * c)
Source code in autogen/agentchat/conversable_agent.py
| def register_for_llm(
self,
*,
name: str | None = None,
description: str | None = None,
api_style: Literal["function", "tool"] = "tool",
silent_override: bool = False,
) -> Callable[[F | Tool], Tool]:
"""Decorator factory for registering a function to be used by an agent.
It's return value is used to decorate a function to be registered to the agent. The function uses type hints to
specify the arguments and return type. The function name is used as the default name for the function,
but a custom name can be provided. The function description is used to describe the function in the
agent's configuration.
Args:
name (optional(str)): name of the function. If None, the function name will be used (default: None).
description (optional(str)): description of the function (default: None). It is mandatory
for the initial decorator, but the following ones can omit it.
api_style: (literal): the API style for function call.
For Azure OpenAI API, use version 2023-12-01-preview or later.
`"function"` style will be deprecated. For earlier version use
`"function"` if `"tool"` doesn't work.
See [Azure OpenAI documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/function-calling?tabs=python) for details.
silent_override (bool): whether to suppress any override warning messages.
Returns:
The decorator for registering a function to be used by an agent.
Examples:
```
@user_proxy.register_for_execution()
@agent2.register_for_llm()
@agent1.register_for_llm(description="This is a very useful function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14) -> str:
return a + str(b * c)
```
For Azure OpenAI versions prior to 2023-12-01-preview, set `api_style`
to `"function"` if `"tool"` doesn't work:
```
@agent2.register_for_llm(api_style="function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14) -> str:
return a + str(b * c)
```
"""
def _decorator(func_or_tool: F | Tool, name: str | None = name, description: str | None = description) -> Tool:
"""Decorator for registering a function to be used by an agent.
Args:
func_or_tool: The function or the tool to be registered.
name: The name of the function or the tool.
description: The description of the function or the tool.
Returns:
The function to be registered, with the _description attribute set to the function description.
Raises:
ValueError: if the function description is not provided and not propagated by a previous decorator.
RuntimeError: if the LLM config is not set up before registering a function.
"""
tool = self._create_tool_if_needed(func_or_tool, name, description)
self._register_for_llm(tool, api_style, silent_override=silent_override)
if tool not in self._tools:
self._tools.append(tool)
return tool
return _decorator
|
Set the UI tools for the agent.
PARAMETER | DESCRIPTION |
tools | a list of tools to be set. TYPE: list[Tool] |
Source code in autogen/agentchat/conversable_agent.py
| def set_ui_tools(self, tools: list[Tool]) -> None:
"""Set the UI tools for the agent.
Args:
tools: a list of tools to be set.
"""
# Unset the previous UI tools
self._unset_previous_ui_tools()
# Set the new UI tools
for tool in tools:
# Register the tool for LLM
self._register_for_llm(tool, api_style="tool", silent_override=True)
if tool not in self._tools:
self._tools.append(tool)
# Register for execution
self.register_for_execution(serialize=False, silent_override=True)(tool)
# Set the current UI tools
self._ui_tools = tools
|
Unset the UI tools for the agent.
PARAMETER | DESCRIPTION |
tools | a list of tools to be unset. TYPE: list[Tool] |
Source code in autogen/agentchat/conversable_agent.py
| def unset_ui_tools(self, tools: list[Tool]) -> None:
"""Unset the UI tools for the agent.
Args:
tools: a list of tools to be unset.
"""
for tool in tools:
self.remove_tool_for_llm(tool)
|
register_for_execution
register_for_execution(name=None, description=None, *, serialize=True, silent_override=False)
Decorator factory for registering a function to be executed by an agent.
It's return value is used to decorate a function to be registered to the agent.
PARAMETER | DESCRIPTION |
name | name of the function. If None, the function name will be used (default: None). TYPE: str | None DEFAULT: None |
description | description of the function (default: None). TYPE: str | None DEFAULT: None |
serialize | whether to serialize the return value TYPE: bool DEFAULT: True |
silent_override | whether to suppress any override warning messages TYPE: bool DEFAULT: False |
RETURNS | DESCRIPTION |
Callable[[Tool | F], Tool] | The decorator for registering a function to be used by an agent. |
Examples:
@user_proxy.register_for_execution()
@agent2.register_for_llm()
@agent1.register_for_llm(description="This is a very useful function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14):
return a + str(b * c)
Source code in autogen/agentchat/conversable_agent.py
| def register_for_execution(
self,
name: str | None = None,
description: str | None = None,
*,
serialize: bool = True,
silent_override: bool = False,
) -> Callable[[Tool | F], Tool]:
"""Decorator factory for registering a function to be executed by an agent.
It's return value is used to decorate a function to be registered to the agent.
Args:
name: name of the function. If None, the function name will be used (default: None).
description: description of the function (default: None).
serialize: whether to serialize the return value
silent_override: whether to suppress any override warning messages
Returns:
The decorator for registering a function to be used by an agent.
Examples:
```
@user_proxy.register_for_execution()
@agent2.register_for_llm()
@agent1.register_for_llm(description="This is a very useful function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14):
return a + str(b * c)
```
"""
def _decorator(func_or_tool: Tool | F, name: str | None = name, description: str | None = description) -> Tool:
"""Decorator for registering a function to be used by an agent.
Args:
func_or_tool: the function or the tool to be registered.
name: the name of the function.
description: the description of the function.
Returns:
The tool to be registered.
"""
tool = self._create_tool_if_needed(func_or_tool, name, description)
chat_context = ChatContext(self)
chat_context_params = dict.fromkeys(tool._chat_context_param_names, chat_context)
self.register_function(
{tool.name: self._wrap_function(tool.func, chat_context_params, serialize=serialize)},
silent_override=silent_override,
)
return tool
return _decorator
|
register_model_client
register_model_client(model_client_cls, **kwargs)
Register a model client.
PARAMETER | DESCRIPTION |
model_client_cls | A custom client class that follows the Client interface TYPE: ModelClient |
**kwargs | The kwargs for the custom client class to be initialized with TYPE: Any DEFAULT: {} |
Source code in autogen/agentchat/conversable_agent.py
| def register_model_client(self, model_client_cls: ModelClient, **kwargs: Any):
"""Register a model client.
Args:
model_client_cls: A custom client class that follows the Client interface
**kwargs: The kwargs for the custom client class to be initialized with
"""
self.client.register_model_client(model_client_cls, **kwargs)
|
register_hook
register_hook(hookable_method, hook)
Registers a hook to be called by a hookable method, in order to add a capability to the agent. Registered hooks are kept in lists (one per hookable method), and are called in their order of registration.
PARAMETER | DESCRIPTION |
hookable_method | A hookable method name implemented by ConversableAgent. TYPE: str |
hook | A method implemented by a subclass of AgentCapability. TYPE: Callable |
Source code in autogen/agentchat/conversable_agent.py
| def register_hook(self, hookable_method: str, hook: Callable):
"""Registers a hook to be called by a hookable method, in order to add a capability to the agent.
Registered hooks are kept in lists (one per hookable method), and are called in their order of registration.
Args:
hookable_method: A hookable method name implemented by ConversableAgent.
hook: A method implemented by a subclass of AgentCapability.
"""
assert hookable_method in self.hook_lists, f"{hookable_method} is not a hookable method."
hook_list = self.hook_lists[hookable_method]
assert hook not in hook_list, f"{hook} is already registered as a hook."
hook_list.append(hook)
|
update_agent_state_before_reply
update_agent_state_before_reply(messages)
Calls any registered capability hooks to update the agent's state. Primarily used to update context variables. Will, potentially, modify the messages.
Source code in autogen/agentchat/conversable_agent.py
| def update_agent_state_before_reply(self, messages: list[dict[str, Any]]) -> None:
"""Calls any registered capability hooks to update the agent's state.
Primarily used to update context variables.
Will, potentially, modify the messages.
"""
hook_list = self.hook_lists["update_agent_state"]
# Call each hook (in order of registration) to process the messages.
for hook in hook_list:
hook(self, messages)
|
process_all_messages_before_reply
process_all_messages_before_reply(messages)
Calls any registered capability hooks to process all messages, potentially modifying the messages.
Source code in autogen/agentchat/conversable_agent.py
| def process_all_messages_before_reply(self, messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""Calls any registered capability hooks to process all messages, potentially modifying the messages."""
hook_list = self.hook_lists["process_all_messages_before_reply"]
# If no hooks are registered, or if there are no messages to process, return the original message list.
if len(hook_list) == 0 or messages is None:
return messages
# Call each hook (in order of registration) to process the messages.
processed_messages = messages
for hook in hook_list:
processed_messages = hook(processed_messages)
return processed_messages
|
process_last_received_message
process_last_received_message(messages)
Calls any registered capability hooks to use and potentially modify the text of the last message, as long as the last message is not a function call or exit command.
Source code in autogen/agentchat/conversable_agent.py
| def process_last_received_message(self, messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""Calls any registered capability hooks to use and potentially modify the text of the last message,
as long as the last message is not a function call or exit command.
"""
# If any required condition is not met, return the original message list.
hook_list = self.hook_lists["process_last_received_message"]
if len(hook_list) == 0:
return messages # No hooks registered.
if messages is None:
return None # No message to process.
if len(messages) == 0:
return messages # No message to process.
last_message = messages[-1]
if "function_call" in last_message:
return messages # Last message is a function call.
if "context" in last_message:
return messages # Last message contains a context key.
if "content" not in last_message:
return messages # Last message has no content.
user_content = last_message["content"]
if not isinstance(user_content, str) and not isinstance(user_content, list):
# if the user_content is a string, it is for regular LLM
# if the user_content is a list, it should follow the multimodal LMM format.
return messages
if user_content == "exit":
return messages # Last message is an exit command.
# Call each hook (in order of registration) to process the user's message.
processed_user_content = user_content
for hook in hook_list:
processed_user_content = hook(processed_user_content)
if processed_user_content == user_content:
return messages # No hooks actually modified the user's message.
# Replace the last user message with the expanded one.
messages = messages.copy()
messages[-1]["content"] = processed_user_content
return messages
|
print_usage_summary
print_usage_summary(mode=['actual', 'total'])
Print the usage summary.
Source code in autogen/agentchat/conversable_agent.py
| def print_usage_summary(self, mode: str | list[str] = ["actual", "total"]) -> None:
"""Print the usage summary."""
iostream = IOStream.get_default()
if self.client is None:
iostream.send(ConversableAgentUsageSummaryNoCostIncurredEvent(recipient=self))
else:
iostream.send(ConversableAgentUsageSummaryEvent(recipient=self))
if self.client is not None:
self.client.print_usage_summary(mode)
|
get_actual_usage
Get the actual usage summary.
Source code in autogen/agentchat/conversable_agent.py
| def get_actual_usage(self) -> None | dict[str, int]:
"""Get the actual usage summary."""
if self.client is None:
return None
else:
return self.client.actual_usage_summary
|
get_total_usage
Get the total usage summary.
Source code in autogen/agentchat/conversable_agent.py
| def get_total_usage(self) -> None | dict[str, int]:
"""Get the total usage summary."""
if self.client is None:
return None
else:
return self.client.total_usage_summary
|
register_handoff
register_handoff(condition)
Register a single handoff condition (OnContextCondition or OnCondition).
PARAMETER | DESCRIPTION |
condition | The condition to add (OnContextCondition, OnCondition) TYPE: Union[OnContextCondition, OnCondition] |
Source code in autogen/agentchat/conversable_agent.py
| def register_handoff(self, condition: Union["OnContextCondition", "OnCondition"]) -> None:
"""Register a single handoff condition (OnContextCondition or OnCondition).
Args:
condition: The condition to add (OnContextCondition, OnCondition)
"""
self.handoffs.add(condition)
|
register_handoffs
register_handoffs(conditions)
Register multiple handoff conditions (OnContextCondition or OnCondition).
Source code in autogen/agentchat/conversable_agent.py
| def register_handoffs(self, conditions: list[Union["OnContextCondition", "OnCondition"]]) -> None:
"""Register multiple handoff conditions (OnContextCondition or OnCondition).
Args:
conditions: List of conditions to add
"""
self.handoffs.add_many(conditions)
|
register_input_guardrail(guardrail)
Register a guardrail to be used for input validation.
PARAMETER | DESCRIPTION |
guardrail | The guardrail to register. TYPE: Guardrail |
Source code in autogen/agentchat/conversable_agent.py
| def register_input_guardrail(self, guardrail: "Guardrail") -> None:
"""Register a guardrail to be used for input validation.
Args:
guardrail: The guardrail to register.
"""
self.input_guardrails.append(guardrail)
|
register_input_guardrails(guardrails)
Register multiple guardrails to be used for input validation.
PARAMETER | DESCRIPTION |
guardrails | List of guardrails to register. TYPE: list[Guardrail] |
Source code in autogen/agentchat/conversable_agent.py
| def register_input_guardrails(self, guardrails: list["Guardrail"]) -> None:
"""Register multiple guardrails to be used for input validation.
Args:
guardrails: List of guardrails to register.
"""
self.input_guardrails.extend(guardrails)
|
register_output_guardrail
register_output_guardrail(guardrail)
Register a guardrail to be used for output validation.
PARAMETER | DESCRIPTION |
guardrail | The guardrail to register. TYPE: Guardrail |
Source code in autogen/agentchat/conversable_agent.py
| def register_output_guardrail(self, guardrail: "Guardrail") -> None:
"""Register a guardrail to be used for output validation.
Args:
guardrail: The guardrail to register.
"""
self.output_guardrails.append(guardrail)
|
register_output_guardrails
register_output_guardrails(guardrails)
Register multiple guardrails to be used for output validation.
PARAMETER | DESCRIPTION |
guardrails | List of guardrails to register. TYPE: list[Guardrail] |
Source code in autogen/agentchat/conversable_agent.py
| def register_output_guardrails(self, guardrails: list["Guardrail"]) -> None:
"""Register multiple guardrails to be used for output validation.
Args:
guardrails: List of guardrails to register.
"""
self.output_guardrails.extend(guardrails)
|