Skip to content

Blog#

AutoGen's Teachable Agents

Teachable Agent Architecture

TL;DR:

  • We introduce Teachable Agents so that users can teach their LLM-based assistants new facts, preferences, and skills.
  • We showcase examples of teachable agents learning and later recalling facts, preferences, and skills in subsequent chats.

Introduction

Conversational assistants based on LLMs can remember the current chat with the user, and can also demonstrate in-context learning of user teachings during the conversation. But the assistant's memories and learnings are lost once the chat is over, or when a single chat grows too long for the LLM to handle effectively. Then in subsequent chats the user is forced to repeat any necessary instructions over and over.

Teachability addresses these limitations by persisting user teachings across chat boundaries in long-term memory implemented as a vector database. Instead of copying all of memory into the context window, which would eat up valuable space, individual memories (called memos) are retrieved into context as needed. This allows the user to teach frequently used facts and skills to the teachable agent just once, and have it recall them in later chats.

Any instantiated agent that inherits from ConversableAgent can be made teachable by instantiating a Teachability object and calling its add_to_agent(agent) method. In order to make effective decisions about memo storage and retrieval, the Teachability object calls an instance of TextAnalyzerAgent (another AutoGen agent) to identify and reformulate text as needed for remembering facts, preferences, and skills. Note that this adds extra LLM calls involving a relatively small number of tokens, which can add a few seconds to the time a user waits for each response.

Retrieval-Augmented Generation (RAG) Applications with AutoGen

Last update: August 14, 2024; AutoGen version: v0.2.35

RAG Architecture

TL;DR: * We introduce RetrieveUserProxyAgent, RAG agents of AutoGen that allows retrieval-augmented generation, and its basic usage. * We showcase customizations of RAG agents, such as customizing the embedding function, the text split function and vector database. * We also showcase two advanced usage of RAG agents, integrating with group chat and building a Chat application with Gradio.

MathChat - An Conversational Framework to Solve Math Problems

MathChat WorkFlow TL;DR:

  • We introduce MathChat, a conversational framework leveraging Large Language Models (LLMs), specifically GPT-4, to solve advanced mathematical problems.
  • MathChat improves LLM's performance on challenging math problem-solving, outperforming basic prompting and other strategies by about 6%. The improvement was especially notable in the Algebra category, with a 15% increase in accuracy.
  • Despite the advancement, GPT-4 still struggles to solve very challenging math problems, even with effective prompting strategies. Further improvements are needed, such as the development of more specific assistant models or the integration of new tools and prompts.

Achieve More, Pay Less - Use GPT-4 Smartly

An adaptive way of using GPT-3.5 and GPT-4 outperforms GPT-4 in both coding success rate and inference cost

TL;DR:

  • A case study using the HumanEval benchmark shows that an adaptive way of using multiple GPT models can achieve both much higher accuracy (from 68% to 90%) and lower inference cost (by 18%) than using GPT-4 for coding.

GPT-4 is a big upgrade of foundation model capability, e.g., in code and math, accompanied by a much higher (more than 10x) price per token to use over GPT-3.5-Turbo. On a code completion benchmark, HumanEval, developed by OpenAI, GPT-4 can successfully solve 68% tasks while GPT-3.5-Turbo does 46%. It is possible to increase the success rate of GPT-4 further by generating multiple responses or making multiple calls. However, that will further increase the cost, which is already nearly 20 times of using GPT-3.5-Turbo and with more restricted API call rate limit. Can we achieve more with less?

In this blog post, we will explore a creative, adaptive way of using GPT models which leads to a big leap forward.

Does Model and Inference Parameter Matter in LLM Applications? - A Case Study for MATH

level 2 algebra

TL;DR: * Just by tuning the inference parameters like model, number of responses, temperature etc. without changing any model weights or prompt, the baseline accuracy of untuned gpt-4 can be improved by 20% in high school math competition problems. * For easy problems, the tuned gpt-3.5-turbo model vastly outperformed untuned gpt-4 in accuracy (e.g., 90% vs. 70%) and cost efficiency. For hard problems, the tuned gpt-4 is much more accurate (e.g., 35% vs. 20%) and less expensive than untuned gpt-4. * AutoGen can help with model selection, parameter tuning, and cost-saving in LLM applications.