Skip to content

Blog#

Achieve More, Pay Less - Use GPT-4 Smartly

An adaptive way of using GPT-3.5 and GPT-4 outperforms GPT-4 in both coding success rate and inference cost

TL;DR:

  • A case study using the HumanEval benchmark shows that an adaptive way of using multiple GPT models can achieve both much higher accuracy (from 68% to 90%) and lower inference cost (by 18%) than using GPT-4 for coding.

GPT-4 is a big upgrade of foundation model capability, e.g., in code and math, accompanied by a much higher (more than 10x) price per token to use over GPT-3.5-Turbo. On a code completion benchmark, HumanEval, developed by OpenAI, GPT-4 can successfully solve 68% tasks while GPT-3.5-Turbo does 46%. It is possible to increase the success rate of GPT-4 further by generating multiple responses or making multiple calls. However, that will further increase the cost, which is already nearly 20 times of using GPT-3.5-Turbo and with more restricted API call rate limit. Can we achieve more with less?

In this blog post, we will explore a creative, adaptive way of using GPT models which leads to a big leap forward.

Does Model and Inference Parameter Matter in LLM Applications? - A Case Study for MATH

level 2 algebra

TL;DR: * Just by tuning the inference parameters like model, number of responses, temperature etc. without changing any model weights or prompt, the baseline accuracy of untuned gpt-4 can be improved by 20% in high school math competition problems. * For easy problems, the tuned gpt-3.5-turbo model vastly outperformed untuned gpt-4 in accuracy (e.g., 90% vs. 70%) and cost efficiency. For hard problems, the tuned gpt-4 is much more accurate (e.g., 35% vs. 20%) and less expensive than untuned gpt-4. * AutoGen can help with model selection, parameter tuning, and cost-saving in LLM applications.