Open In Colab Open on GitHub

AutoGen offers utilities to log data for debugging and performance analysis. This notebook demonstrates how to use them.

we log data in different modes: - SQlite Database - File

In general, users can initiate logging by calling autogen.runtime_logging.start() and stop logging by calling autogen.runtime_logging.stop()

import json

import pandas as pd

import autogen
from autogen import AssistantAgent, UserProxyAgent

# Setup API key. Add your own API key to config file or environment variable
llm_config = {
    "config_list": autogen.config_list_from_json(
        env_or_file="OAI_CONFIG_LIST",
    ),
    "temperature": 0.9,
}

# Start logging
logging_session_id = autogen.runtime_logging.start(config={"dbname": "logs.db"})
print("Logging session ID: " + str(logging_session_id))

# Create an agent workflow and run it
assistant = AssistantAgent(name="assistant", llm_config=llm_config)
user_proxy = UserProxyAgent(
    name="user_proxy",
    code_execution_config=False,
    human_input_mode="NEVER",
    is_termination_msg=lambda msg: "TERMINATE" in msg["content"],
)

user_proxy.initiate_chat(
    assistant, message="What is the height of the Eiffel Tower? Only respond with the answer and terminate"
)
autogen.runtime_logging.stop()
Logging session ID: 6e08f3e0-392b-434e-8b69-4ab36c4fcf99
user_proxy (to assistant):

What is the height of the Eiffel Tower? Only respond with the answer and terminate

--------------------------------------------------------------------------------
assistant (to user_proxy):

The height of the Eiffel Tower is approximately 330 meters.

TERMINATE

--------------------------------------------------------------------------------

Getting Data from the SQLite Database

logs.db should be generated, by default it’s using SQLite database. You can view the data with GUI tool like sqlitebrowser, using SQLite command line shell or using python script:

def get_log(dbname="logs.db", table="chat_completions"):
    import sqlite3

    con = sqlite3.connect(dbname)
    query = f"SELECT * from {table}"
    cursor = con.execute(query)
    rows = cursor.fetchall()
    column_names = [description[0] for description in cursor.description]
    data = [dict(zip(column_names, row)) for row in rows]
    con.close()
    return data
def str_to_dict(s):
    return json.loads(s)


log_data = get_log()
log_data_df = pd.DataFrame(log_data)

log_data_df["total_tokens"] = log_data_df.apply(
    lambda row: str_to_dict(row["response"])["usage"]["total_tokens"], axis=1
)

log_data_df["request"] = log_data_df.apply(lambda row: str_to_dict(row["request"])["messages"][0]["content"], axis=1)

log_data_df["response"] = log_data_df.apply(
    lambda row: str_to_dict(row["response"])["choices"][0]["message"]["content"], axis=1
)

log_data_df
id invocation_id client_id wrapper_id session_id request response is_cached cost start_time end_time total_tokens
0 1 e8bb00d7-6da5-4407-a949-e19b55d53da8 139819167322784 139823225568704 8821a150-8c78-4d05-a858-8a64f1d18648 You are a helpful AI assistant. Solve tasks u... The height of the Eiffel Tower is approximatel... 1 0.01572 2024-02-13 15:06:22.082896 2024-02-13 15:06:22.083169 507
1 2 c8522790-0067-484b-bb37-d39ae80db98b 139823225568656 139823225563040 fb0ef547-a2ac-428b-8c20-a5e63263b8e1 You are a helpful AI assistant. Solve tasks u... The height of the Eiffel Tower is approximatel... 1 0.01572 2024-02-13 15:06:23.498758 2024-02-13 15:06:23.499045 507
2 3 91c3f6c0-c6f7-4306-89cd-f304c9556de4 139823225449024 139819166072448 6e08f3e0-392b-434e-8b69-4ab36c4fcf99 You are a helpful AI assistant. Solve tasks u... The height of the Eiffel Tower is approximatel... 1 0.01572 2024-02-13 15:06:24.688990 2024-02-13 15:06:24.689238 507

Computing Cost

One use case of logging data is to compute the cost of a session.

# Sum totoal tokens for all sessions
total_tokens = log_data_df["total_tokens"].sum()

# Sum total cost for all sessions
total_cost = log_data_df["cost"].sum()

# Total tokens for specific session
session_tokens = log_data_df[log_data_df["session_id"] == logging_session_id]["total_tokens"].sum()
session_cost = log_data_df[log_data_df["session_id"] == logging_session_id]["cost"].sum()

print("Total tokens for all sessions: " + str(total_tokens) + ", total cost: " + str(round(total_cost, 4)))
print(
    "Total tokens for session "
    + str(logging_session_id)
    + ": "
    + str(session_tokens)
    + ", cost: "
    + str(round(session_cost, 4))
)
Total tokens for all sessions: 1521, total cost: 0.0472
Total tokens for session 6e08f3e0-392b-434e-8b69-4ab36c4fcf99: 507, cost: 0.0157

Log data in File mode

By default, the log type is set to sqlite as shown above, but we introduced a new parameter for the autogen.runtime_logging.start()

the logger_type = "file" will start to log data in the File mode.

import pandas as pd

import autogen
from autogen import AssistantAgent, UserProxyAgent

# Setup API key. Add your own API key to config file or environment variable
llm_config = {
    "config_list": autogen.config_list_from_json(
        env_or_file="OAI_CONFIG_LIST",
    ),
    "temperature": 0.9,
}

# Start logging with logger_type and the filename to log to
logging_session_id = autogen.runtime_logging.start(logger_type="file", config={"filename": "runtime.log"})
print("Logging session ID: " + str(logging_session_id))

# Create an agent workflow and run it
assistant = AssistantAgent(name="assistant", llm_config=llm_config)
user_proxy = UserProxyAgent(
    name="user_proxy",
    code_execution_config=False,
    human_input_mode="NEVER",
    is_termination_msg=lambda msg: "TERMINATE" in msg["content"],
)

user_proxy.initiate_chat(
    assistant, message="What is the height of the Eiffel Tower? Only respond with the answer and terminate"
)
autogen.runtime_logging.stop()
Logging session ID: ed493ebf-d78e-49f0-b832-69557276d557
user_proxy (to assistant):

What is the height of the Eiffel Tower? Only respond with the answer and terminate

--------------------------------------------------------------------------------
assistant (to user_proxy):

The height of the Eiffel Tower is 330 meters.
TERMINATE

--------------------------------------------------------------------------------

This should create a runtime.log file in your current directory.